Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
SWIFTsim
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Deploy
Releases
Model registry
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
SWIFT
SWIFTsim
Commits
ec462666
Commit
ec462666
authored
8 years ago
by
Matthieu Schaller
Browse files
Options
Downloads
Patches
Plain Diff
Added python script to generate C code of the cartesian FMM relations.
parent
1872840e
No related branches found
No related tags found
1 merge request
!324
Gravity multi dt
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
theory/Multipoles/multipoles.py
+179
-0
179 additions, 0 deletions
theory/Multipoles/multipoles.py
with
179 additions
and
0 deletions
theory/Multipoles/multipoles.py
0 → 100644
+
179
−
0
View file @
ec462666
import
numpy
as
np
import
sys
def
factorial
(
x
):
if
x
==
0
:
return
1
else
:
return
x
*
factorial
(
x
-
1
)
SUFFIXES
=
{
1
:
'
st
'
,
2
:
'
nd
'
,
3
:
'
rd
'
}
def
ordinal
(
num
):
suffix
=
SUFFIXES
.
get
(
num
%
10
,
'
th
'
)
return
str
(
num
)
+
suffix
# Get the order
order
=
int
(
sys
.
argv
[
1
])
print
"
-------------------------------------------------
"
print
"
Generating code for multipoles of order
"
,
order
,
"
(only).
"
print
"
-------------------------------------------------
\n
"
print
"
-------------------------------------------------
"
print
"
Multipole structure:
"
print
"
-------------------------------------------------
\n
"
if
order
>
0
:
print
"
#if SELF_GRAVITY_MULTIPOLE_ORDER > %d
\n
"
%
(
order
-
1
)
print
"
/* %s order terms */
"
%
ordinal
(
order
)
# Create all the terms relevent for this order
for
i
in
range
(
order
+
1
):
for
j
in
range
(
order
+
1
):
for
k
in
range
(
order
+
1
):
if
i
+
j
+
k
==
order
:
print
"
float M_%d%d%d;
"
%
(
i
,
j
,
k
)
if
order
>
0
:
print
"
#endif
"
print
""
print
"
-------------------------------------------------
"
print
"
Field tensor structure:
"
print
"
-------------------------------------------------
\n
"
if
order
>
0
:
print
"
#if SELF_GRAVITY_MULTIPOLE_ORDER > %d
\n
"
%
(
order
-
1
)
print
"
/* %s order terms */
"
%
ordinal
(
order
)
# Create all the terms relevent for this order
for
i
in
range
(
order
+
1
):
for
j
in
range
(
order
+
1
):
for
k
in
range
(
order
+
1
):
if
i
+
j
+
k
==
order
:
print
"
float F_%d%d%d;
"
%
(
i
,
j
,
k
)
if
order
>
0
:
print
"
#endif
"
print
""
print
"
-------------------------------------------------
"
print
"
gravity_field_tensors_add():
"
print
"
-------------------------------------------------
\n
"
if
order
>
0
:
print
"
#if SELF_GRAVITY_MULTIPOLE_ORDER > %d
"
%
(
order
-
1
)
print
"
/* %s order terms */
"
%
ordinal
(
order
)
# Create all the terms relevent for this order
for
i
in
range
(
order
+
1
):
for
j
in
range
(
order
+
1
):
for
k
in
range
(
order
+
1
):
if
i
+
j
+
k
==
order
:
print
"
la->F_%d%d%d += lb->F_%d%d%d;
"
%
(
i
,
j
,
k
,
i
,
j
,
k
)
if
order
>
0
:
print
"
#endif
"
print
""
print
"
-------------------------------------------------
"
print
"
gravity_multipole_add():
"
print
"
-------------------------------------------------
\n
"
if
order
>
0
:
print
"
#if SELF_GRAVITY_MULTIPOLE_ORDER > %d
"
%
(
order
-
1
)
print
"
/* %s order terms */
"
%
ordinal
(
order
)
# Create all the terms relevent for this order
for
i
in
range
(
order
+
1
):
for
j
in
range
(
order
+
1
):
for
k
in
range
(
order
+
1
):
if
i
+
j
+
k
==
order
:
print
"
ma->M_%d%d%d += mb->M_%d%d%d;
"
%
(
i
,
j
,
k
,
i
,
j
,
k
)
if
order
>
0
:
print
"
#endif
"
print
""
print
"
-------------------------------------------------
"
print
"
gravity_P2M(): (loop)
"
print
"
-------------------------------------------------
\n
"
if
order
>
0
:
print
"
#if SELF_GRAVITY_MULTIPOLE_ORDER > %d
"
%
(
order
-
1
)
print
"
/* %s order terms */
"
%
ordinal
(
order
)
# Create all the terms relevent for this order
for
i
in
range
(
order
+
1
):
for
j
in
range
(
order
+
1
):
for
k
in
range
(
order
+
1
):
if
i
+
j
+
k
==
order
:
if
order
%
2
==
0
:
print
"
M_%d%d%d += m * X_%d%d%d(dx);
"
%
(
i
,
j
,
k
,
i
,
j
,
k
)
else
:
print
"
M_%d%d%d += -m * X_%d%d%d(dx);
"
%
(
i
,
j
,
k
,
i
,
j
,
k
)
if
order
>
0
:
print
"
#endif
"
print
""
print
"
-------------------------------------------------
"
print
"
gravity_P2M(): (storing)
"
print
"
-------------------------------------------------
\n
"
if
order
>
0
:
print
"
#if SELF_GRAVITY_MULTIPOLE_ORDER > %d
"
%
(
order
-
1
)
print
"
/* %s order terms */
"
%
ordinal
(
order
)
# Create all the terms relevent for this order
for
i
in
range
(
order
+
1
):
for
j
in
range
(
order
+
1
):
for
k
in
range
(
order
+
1
):
if
i
+
j
+
k
==
order
:
print
"
m->m_pole.M_%d%d%d = M_%d%d%d;
"
%
(
i
,
j
,
k
,
i
,
j
,
k
)
if
order
>
0
:
print
"
#endif
"
print
""
print
"
-------------------------------------------------
"
print
"
gravity_M2M():
"
print
"
-------------------------------------------------
\n
"
if
order
>
0
:
print
"
#if SELF_GRAVITY_MULTIPOLE_ORDER > %d
"
%
(
order
-
1
)
print
"
/* Shift %s order terms */
"
%
ordinal
(
order
)
# Create all the terms relevent for this order
for
i
in
range
(
order
+
1
):
for
j
in
range
(
order
+
1
):
for
k
in
range
(
order
+
1
):
if
i
+
j
+
k
==
order
:
print
"
m_a->.M_%d%d%d = m_b->M_%d%d%d
"
%
(
i
,
j
,
k
,
i
,
j
,
k
),
for
ii
in
range
(
order
+
1
):
for
jj
in
range
(
order
+
1
):
for
kk
in
range
(
order
+
1
):
if
not
(
ii
==
0
and
jj
==
0
and
kk
==
0
):
for
iii
in
range
(
order
+
1
):
for
jjj
in
range
(
order
+
1
):
for
kkk
in
range
(
order
+
1
):
if
ii
+
iii
==
i
and
jj
+
jjj
==
j
and
kk
+
kkk
==
k
:
print
"
+ X_%d%d%d(dx) * m_b->M_%d%d%d
"
%
(
ii
,
jj
,
kk
,
iii
,
jjj
,
kkk
),
print
"
;
"
if
order
>
0
:
print
"
#endif
"
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment