Skip to content
Snippets Groups Projects
Commit ca27c105 authored by Matthieu Schaller's avatar Matthieu Schaller
Browse files

Added script to check accuracy of gravity calculation

parent 090d2479
No related branches found
No related tags found
1 merge request!324Gravity multi dt
#!/usr/bin/env python
import sys
import glob
import re
import numpy as np
import matplotlib.pyplot as plt
params = {'axes.labelsize': 14,
'axes.titlesize': 18,
'font.size': 12,
'legend.fontsize': 12,
'xtick.labelsize': 14,
'ytick.labelsize': 14,
'text.usetex': True,
'figure.figsize': (10, 10),
'figure.subplot.left' : 0.06,
'figure.subplot.right' : 0.99 ,
'figure.subplot.bottom' : 0.06 ,
'figure.subplot.top' : 0.985 ,
'figure.subplot.wspace' : 0.14 ,
'figure.subplot.hspace' : 0.14 ,
'lines.markersize' : 6,
'lines.linewidth' : 3.,
'text.latex.unicode': True
}
plt.rcParams.update(params)
plt.rc('font',**{'family':'sans-serif','sans-serif':['Times']})
min_error = 1e-6
max_error = 1e-1
num_bins = 51
bin_edges = np.linspace(np.log10(min_error), np.log10(max_error), num_bins + 1)
bin_size = (np.log10(max_error) - np.log10(min_error)) / num_bins
bins = 0.5*(bin_edges[1:] + bin_edges[:-1])
bin_edges = 10**bin_edges
bins = 10**bins
# Time-step to plot
step = int(sys.argv[1])
# Find the files for the different expansion orders
order_list = glob.glob("gravity_checks_step%d_order*.dat"%step)
num_order = len(order_list)
# Get the multipole orders
order = np.zeros(num_order)
for i in range(num_order):
order[i] = int(order_list[i][26])
# Start the plot
plt.figure()
# Get the Gadget-2 data if existing
gadget2_file_list = glob.glob("forcetest_gadget2.txt")
if len(gadget2_file_list) != 0:
data = np.loadtxt(gadget2_file_list[0])
pos = data[:,1:4]
a_exact = data[:,4:7]
a_grav = data[:, 7:10]
# Compute the error norm
diff = a_exact - a_grav
norm_diff = np.sqrt(diff[:,0]**2 + diff[:,1]**2 + diff[:,2]**2)
norm_a = np.sqrt(a_exact[:,0]**2 + a_exact[:,1]**2 + a_exact[:,2]**2)
norm_error = norm_diff / norm_a
error_x = diff[:,0] / norm_a
error_y = diff[:,1] / norm_a
error_z = diff[:,2] / norm_a
# Bin the error
norm_error_hist,_ = np.histogram(norm_error, bins=bin_edges, density=False) / (np.size(norm_error) * bin_size)
error_x_hist,_ = np.histogram(error_x, bins=bin_edges, density=False) / (np.size(norm_error) * bin_size)
error_y_hist,_ = np.histogram(error_y, bins=bin_edges, density=False) / (np.size(norm_error) * bin_size)
error_z_hist,_ = np.histogram(error_z, bins=bin_edges, density=False) / (np.size(norm_error) * bin_size)
plt.subplot(221)
plt.semilogx(bins, norm_error_hist, 'k--', label="Gadget-2")
plt.subplot(222)
plt.semilogx(bins, error_x_hist, 'k--', label="Gadget-2")
plt.subplot(223)
plt.semilogx(bins, error_y_hist, 'k--', label="Gadget-2")
plt.subplot(224)
plt.semilogx(bins, error_z_hist, 'k--', label="Gadget-2")
# Plot the different histograms
for i in range(num_order):
data = np.loadtxt(order_list[i])
pos = data[:,1:4]
a_exact = data[:,4:7]
a_grav = data[:, 7:10]
# Compute the error norm
diff = a_exact - a_grav
norm_diff = np.sqrt(diff[:,0]**2 + diff[:,1]**2 + diff[:,2]**2)
norm_a = np.sqrt(a_exact[:,0]**2 + a_exact[:,1]**2 + a_exact[:,2]**2)
norm_error = norm_diff / norm_a
error_x = diff[:,0] / norm_a
error_y = diff[:,1] / norm_a
error_z = diff[:,2] / norm_a
# Bin the error
norm_error_hist,_ = np.histogram(norm_error, bins=bin_edges, density=False) / (np.size(norm_error) * bin_size)
error_x_hist,_ = np.histogram(error_x, bins=bin_edges, density=False) / (np.size(norm_error) * bin_size)
error_y_hist,_ = np.histogram(error_y, bins=bin_edges, density=False) / (np.size(norm_error) * bin_size)
error_z_hist,_ = np.histogram(error_z, bins=bin_edges, density=False) / (np.size(norm_error) * bin_size)
plt.subplot(221)
plt.semilogx(bins, norm_error_hist, label="SWIFT Multipoles order %d"%order[i])
plt.subplot(222)
plt.semilogx(bins, error_x_hist, label="SWIFT Multipoles order %d"%order[i])
plt.subplot(223)
plt.semilogx(bins, error_y_hist, label="SWIFT Multipoles order %d"%order[i])
plt.subplot(224)
plt.semilogx(bins, error_z_hist, label="SWIFT Multipoles order %d"%order[i])
plt.subplot(221)
plt.xlabel("$|\delta \overrightarrow{a}|/|\overrightarrow{a}_{exact}|$")
plt.ylabel("Density")
plt.xlim(min_error, 2*max_error)
plt.ylim(0,3)
plt.legend(loc="upper left")
plt.subplot(222)
plt.xlabel("$\delta a_x/|\overrightarrow{a}_{exact}|$")
plt.ylabel("Density")
plt.xlim(min_error, 2*max_error)
plt.ylim(0,1)
plt.legend(loc="upper left")
plt.subplot(223)
plt.xlabel("$\delta a_y/|\overrightarrow{a}_{exact}|$")
plt.ylabel("Density")
plt.xlim(min_error, 2*max_error)
plt.ylim(0,1)
plt.legend(loc="upper left")
plt.subplot(224)
plt.xlabel("$\delta a_z/|\overrightarrow{a}_{exact}|$")
plt.ylabel("Density")
plt.xlim(min_error, 2*max_error)
plt.ylim(0,1)
plt.legend(loc="upper left")
plt.savefig("gravity_checks_step%d.png"%step)
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment