... ... @@ -438,8 +438,7 @@ static const vector cond = FILL_VEC(0.5f); /** * @brief Computes the kernel function and its derivative for two particles * using vectors. Does not return zero if $u > \\gamma = H/h$, should only * be called if particles are known to interact. * using vectors. The return value is undefined if $u > \\gamma = H/h$. * * @param u The ratio of the distance to the smoothing length $u = x/h$. * @param w (return) The value of the kernel function $W(x,h)$. ... ... @@ -517,10 +516,8 @@ __attribute__((always_inline)) INLINE static void kernel_deval_1_vec( /** * @brief Computes the kernel function and its derivative for two particles * using interleaved vectors. Does not return zero if $u > \\gamma = H/h$, * should only * be called if particles are known to interact. * * using interleaved vectors. The return value is undefined if $u > \\gamma = H/h$. * * @param u The ratio of the distance to the smoothing length $u = x/h$. * @param w (return) The value of the kernel function $W(x,h)$. * @param dw_dx (return) The norm of the gradient of $|\\nabla W(x,h)|$. ... ... @@ -643,8 +640,7 @@ __attribute__((always_inline)) INLINE static void kernel_deval_2_vec( /** * @brief Computes the kernel function for two particles * using vectors. Does not return zero if $u > \\gamma = H/h$, should only * be called if particles are known to interact. * using vectors. The return value is undefined if $u > \\gamma = H/h$. * * @param u The ratio of the distance to the smoothing length $u = x/h$. * @param w (return) The value of the kernel function $W(x,h)$. ... ... @@ -704,8 +700,7 @@ __attribute__((always_inline)) INLINE static void kernel_eval_W_vec(vector *u, /** * @brief Computes the kernel function derivative for two particles * using vectors. Does not return zero if $u > \\gamma = H/h$, should only * be called if particles are known to interact. * using vectors. The return value is undefined if $u > \\gamma = H/h$. * * @param u The ratio of the distance to the smoothing length $u = x/h$. * @param dw_dx (return) The norm of the gradient of $|\\nabla W(x,h)|$. ... ...