Skip to content
Snippets Groups Projects
Commit a766a9a2 authored by James Willis's avatar James Willis
Browse files

Removed alternate version of doself2_vec that was slower than current version....

Removed alternate version of doself2_vec that was slower than current version. Renamed some variables. Removed left-packing functions for force interactions as they are not used anymore.
parent d58babff
Branches
Tags
1 merge request!406Doself2 vectorisation
...@@ -225,261 +225,6 @@ __attribute__((always_inline)) INLINE static void storeInteractions( ...@@ -225,261 +225,6 @@ __attribute__((always_inline)) INLINE static void storeInteractions(
} }
} }
/**
* @brief Compute the vector remainder force interactions from the secondary
* cache.
*
* @param int_cache (return) secondary #cache of interactions between two
* particles.
* @param icount Interaction count.
* @param a_hydro_xSum (return) #vector holding the cumulative sum of the x
* acceleration
* update on pi.
* @param a_hydro_ySum (return) #vector holding the cumulative sum of the y
* acceleration
* update on pi.
* @param a_hydro_zSum (return) #vector holding the cumulative sum of the z
* acceleration
* update on pi.
* @param h_dtSum (return) #vector holding the cumulative sum of the time
* derivative of the smoothing length update on pi.
* @param v_sigSum (return) #vector holding the maximum of the signal velocity
* update on pi.
* @param entropy_dtSum (return) #vector holding the cumulative sum of the time
* derivative of the entropy
* update on pi.
* @param v_hi_inv #vector of 1/h for pi.
* @param v_vix #vector of x velocity of pi.
* @param v_viy #vector of y velocity of pi.
* @param v_viz #vector of z velocity of pi.
* @param v_rhoi #vector of density of pi.
* @param v_grad_hi #vector of smoothing length gradient of pi.
* @param v_pOrhoi2 #vector of pressure over density squared of pi.
* @param v_balsara_i #vector of balsara switch of pi.
* @param v_ci #vector of sound speed of pi.
* @param icount_align (return) Interaction count after the remainder
* @param num_vec_proc #int of the number of vectors to use to perform
* interaction.
* interactions have been performed, should be a multiple of the vector length.
*/
__attribute__((always_inline)) INLINE static void calcRemForceInteractions(
struct c2_cache *const int_cache, const int icount, vector *a_hydro_xSum,
vector *a_hydro_ySum, vector *a_hydro_zSum, vector *h_dtSum,
vector *v_sigSum, vector *entropy_dtSum, vector v_hi_inv, vector v_vix,
vector v_viy, vector v_viz, vector v_rhoi, vector v_grad_hi,
vector v_pOrhoi2, vector v_balsara_i, vector v_ci, int *icount_align,
int num_vec_proc) {
mask_t int_mask, int_mask2;
/* Work out the number of remainder interactions and pad secondary cache. */
*icount_align = icount;
int rem = icount % (num_vec_proc * VEC_SIZE);
if (rem != 0) {
int pad = (num_vec_proc * VEC_SIZE) - rem;
*icount_align += pad;
/* Initialise masks to true. */
vec_init_mask_true(int_mask);
vec_init_mask_true(int_mask2);
/* Pad secondary cache so that there are no contributions in the interaction
* function. */
for (int i = icount; i < *icount_align; i++) {
int_cache->mq[i] = 0.f;
int_cache->r2q[i] = 1.f;
int_cache->dxq[i] = 0.f;
int_cache->dyq[i] = 0.f;
int_cache->dzq[i] = 0.f;
int_cache->vxq[i] = 0.f;
int_cache->vyq[i] = 0.f;
int_cache->vzq[i] = 0.f;
int_cache->rhoq[i] = 1.f;
int_cache->grad_hq[i] = 1.f;
int_cache->pOrho2q[i] = 1.f;
int_cache->balsaraq[i] = 1.f;
int_cache->soundspeedq[i] = 1.f;
int_cache->h_invq[i] = 1.f;
}
/* Zero parts of mask that represent the padded values.*/
if (pad < VEC_SIZE) {
vec_pad_mask(int_mask2, pad);
} else {
vec_pad_mask(int_mask, VEC_SIZE - rem);
vec_zero_mask(int_mask2);
}
/* Perform remainder interaction and remove remainder from aligned
* interaction count. */
*icount_align = icount - rem;
runner_iact_nonsym_2_vec_force(
&int_cache->r2q[*icount_align], &int_cache->dxq[*icount_align],
&int_cache->dyq[*icount_align], &int_cache->dzq[*icount_align], v_vix,
v_viy, v_viz, v_rhoi, v_grad_hi, v_pOrhoi2, v_balsara_i, v_ci,
&int_cache->vxq[*icount_align], &int_cache->vyq[*icount_align],
&int_cache->vzq[*icount_align], &int_cache->rhoq[*icount_align],
&int_cache->grad_hq[*icount_align], &int_cache->pOrho2q[*icount_align],
&int_cache->balsaraq[*icount_align],
&int_cache->soundspeedq[*icount_align], &int_cache->mq[*icount_align],
v_hi_inv, &int_cache->h_invq[*icount_align], a_hydro_xSum, a_hydro_ySum,
a_hydro_zSum, h_dtSum, v_sigSum, entropy_dtSum, int_mask, int_mask2, 1);
}
}
/**
* @brief Left-packs the values needed by an interaction into the secondary
* cache (Supports AVX, AVX2 and AVX512 instruction sets).
*
* @param mask Contains which particles need to interact.
* @param pjd Index of the particle to store into.
* @param v_r2 #vector of the separation between two particles squared.
* @param v_dx #vector of the x separation between two particles.
* @param v_dy #vector of the y separation between two particles.
* @param v_dz #vector of the z separation between two particles.
* @param cell_cache #cache of all particles in the cell.
* @param int_cache (return) secondary #cache of interactions between two
* particles.
* @param icount Interaction count.
* @param a_hydro_xSum (return) #vector holding the cumulative sum of the x
* acceleration
* update on pi.
* @param a_hydro_ySum (return) #vector holding the cumulative sum of the y
* acceleration
* update on pi.
* @param a_hydro_zSum (return) #vector holding the cumulative sum of the z
* acceleration
* update on pi.
* @param h_dtSum (return) #vector holding the cumulative sum of the time
* derivative of the smoothing length update on pi.
* @param v_sigSum (return) #vector holding the maximum of the signal velocity
* update on pi.
* @param entropy_dtSum (return) #vector holding the cumulative sum of the time
* derivative of the entropy
* update on pi.
* @param v_hi_inv #vector of 1/h for pi.
* @param v_vix #vector of x velocity of pi.
* @param v_viy #vector of y velocity of pi.
* @param v_viz #vector of z velocity of pi.
* @param v_rhoi #vector of density of pi.
* @param v_grad_hi #vector of smoothing length gradient of pi.
* @param v_pOrhoi2 #vector of pressure over density squared of pi.
* @param v_balsara_i #vector of balsara switch of pi.
* @param v_ci #vector of sound speed of pi.
* @param num_vec_proc #int of the number of vectors to use to perform
* interaction.
* interactions have been performed, should be a multiple of the vector length.
*/
__attribute__((always_inline)) INLINE static void storeForceInteractions(
const int mask, const int pjd, vector *v_r2, vector *v_dx, vector *v_dy,
vector *v_dz, const struct cache *const cell_cache,
struct c2_cache *const int_cache, int *icount, vector *a_hydro_xSum,
vector *a_hydro_ySum, vector *a_hydro_zSum, vector *h_dtSum,
vector *v_sigSum, vector *entropy_dtSum, vector v_hi_inv, vector v_vix,
vector v_viy, vector v_viz, vector v_rhoi, vector v_grad_hi,
vector v_pOrhoi2, vector v_balsara_i, vector v_ci, int num_vec_proc) {
/* Left-pack values needed into the secondary cache using the interaction mask.
*/
#if defined(HAVE_AVX2) || defined(HAVE_AVX512_F)
/* Invert hj. */
vector v_hj, v_hj_inv;
v_hj.v = vec_load(&cell_cache->h[pjd]);
v_hj_inv = vec_reciprocal(v_hj);
mask_t packed_mask;
VEC_FORM_PACKED_MASK(mask, packed_mask);
VEC_LEFT_PACK(v_r2->v, packed_mask, &int_cache->r2q[*icount]);
VEC_LEFT_PACK(v_dx->v, packed_mask, &int_cache->dxq[*icount]);
VEC_LEFT_PACK(v_dy->v, packed_mask, &int_cache->dyq[*icount]);
VEC_LEFT_PACK(v_dz->v, packed_mask, &int_cache->dzq[*icount]);
VEC_LEFT_PACK(vec_load(&cell_cache->m[pjd]), packed_mask,
&int_cache->mq[*icount]);
VEC_LEFT_PACK(vec_load(&cell_cache->vx[pjd]), packed_mask,
&int_cache->vxq[*icount]);
VEC_LEFT_PACK(vec_load(&cell_cache->vy[pjd]), packed_mask,
&int_cache->vyq[*icount]);
VEC_LEFT_PACK(vec_load(&cell_cache->vz[pjd]), packed_mask,
&int_cache->vzq[*icount]);
VEC_LEFT_PACK(vec_load(&cell_cache->rho[pjd]), packed_mask,
&int_cache->rhoq[*icount]);
VEC_LEFT_PACK(vec_load(&cell_cache->grad_h[pjd]), packed_mask,
&int_cache->grad_hq[*icount]);
VEC_LEFT_PACK(vec_load(&cell_cache->pOrho2[pjd]), packed_mask,
&int_cache->pOrho2q[*icount]);
VEC_LEFT_PACK(vec_load(&cell_cache->balsara[pjd]), packed_mask,
&int_cache->balsaraq[*icount]);
VEC_LEFT_PACK(vec_load(&cell_cache->soundspeed[pjd]), packed_mask,
&int_cache->soundspeedq[*icount]);
VEC_LEFT_PACK(v_hj_inv.v, packed_mask, &int_cache->h_invq[*icount]);
/* Increment interaction count by number of bits set in mask. */
(*icount) += __builtin_popcount(mask);
#else
/* Quicker to do it serially in AVX rather than use intrinsics. */
for (int bit_index = 0; bit_index < VEC_SIZE; bit_index++) {
if (mask & (1 << bit_index)) {
/* Add this interaction to the queue. */
int_cache->r2q[*icount] = v_r2->f[bit_index];
int_cache->dxq[*icount] = v_dx->f[bit_index];
int_cache->dyq[*icount] = v_dy->f[bit_index];
int_cache->dzq[*icount] = v_dz->f[bit_index];
int_cache->mq[*icount] = cell_cache->m[pjd + bit_index];
int_cache->vxq[*icount] = cell_cache->vx[pjd + bit_index];
int_cache->vyq[*icount] = cell_cache->vy[pjd + bit_index];
int_cache->vzq[*icount] = cell_cache->vz[pjd + bit_index];
int_cache->rhoq[*icount] = cell_cache->rho[pjd + bit_index];
int_cache->grad_hq[*icount] = cell_cache->grad_h[pjd + bit_index];
int_cache->pOrho2q[*icount] = cell_cache->pOrho2[pjd + bit_index];
int_cache->balsaraq[*icount] = cell_cache->balsara[pjd + bit_index];
int_cache->soundspeedq[*icount] = cell_cache->soundspeed[pjd + bit_index];
int_cache->h_invq[*icount] = 1.f / cell_cache->h[pjd + bit_index];
(*icount)++;
}
}
#endif /* defined(HAVE_AVX2) || defined(HAVE_AVX512_F) */
/* Flush the c2 cache if it has reached capacity. */
if (*icount >= (C2_CACHE_SIZE - (num_vec_proc * VEC_SIZE))) {
int icount_align = *icount;
/* Peform remainder interactions. */
calcRemForceInteractions(int_cache, *icount, a_hydro_xSum, a_hydro_ySum,
a_hydro_zSum, h_dtSum, v_sigSum, entropy_dtSum,
v_hi_inv, v_vix, v_viy, v_viz, v_rhoi, v_grad_hi,
v_pOrhoi2, v_balsara_i, v_ci, &icount_align, 2);
/* Initialise masks to true in case remainder interactions have been
* performed. */
mask_t int_mask, int_mask2;
vec_init_mask_true(int_mask);
vec_init_mask_true(int_mask2);
/* Perform interactions. */
for (int pjd = 0; pjd < icount_align; pjd += (num_vec_proc * VEC_SIZE)) {
runner_iact_nonsym_2_vec_force(
&int_cache->r2q[pjd], &int_cache->dxq[pjd], &int_cache->dyq[pjd],
&int_cache->dzq[pjd], v_vix, v_viy, v_viz, v_rhoi, v_grad_hi,
v_pOrhoi2, v_balsara_i, v_ci, &int_cache->vxq[pjd],
&int_cache->vyq[pjd], &int_cache->vzq[pjd], &int_cache->rhoq[pjd],
&int_cache->grad_hq[pjd], &int_cache->pOrho2q[pjd],
&int_cache->balsaraq[pjd], &int_cache->soundspeedq[pjd],
&int_cache->mq[pjd], v_hi_inv, &int_cache->h_invq[pjd], a_hydro_xSum,
a_hydro_ySum, a_hydro_zSum, h_dtSum, v_sigSum, entropy_dtSum,
int_mask, int_mask2, 0);
}
/* Reset interaction count. */
*icount = 0;
}
}
/** /**
* @brief Populates the arrays max_index_i and max_index_j with the maximum * @brief Populates the arrays max_index_i and max_index_j with the maximum
* indices of * indices of
...@@ -738,22 +483,22 @@ __attribute__((always_inline)) INLINE void runner_doself1_density_vec( ...@@ -738,22 +483,22 @@ __attribute__((always_inline)) INLINE void runner_doself1_density_vec(
pjz2.v = vec_load(&cell_cache->z[pjd + VEC_SIZE]); pjz2.v = vec_load(&cell_cache->z[pjd + VEC_SIZE]);
/* Compute the pairwise distance. */ /* Compute the pairwise distance. */
vector v_dx_tmp, v_dy_tmp, v_dz_tmp; vector v_dx, v_dy, v_dz;
vector v_dx_tmp2, v_dy_tmp2, v_dz_tmp2, v_r2_2; vector v_dx_2, v_dy_2, v_dz_2, v_r2_2;
v_dx_tmp.v = vec_sub(pix.v, pjx.v); v_dx.v = vec_sub(pix.v, pjx.v);
v_dx_tmp2.v = vec_sub(pix.v, pjx2.v); v_dx_2.v = vec_sub(pix.v, pjx2.v);
v_dy_tmp.v = vec_sub(piy.v, pjy.v); v_dy.v = vec_sub(piy.v, pjy.v);
v_dy_tmp2.v = vec_sub(piy.v, pjy2.v); v_dy_2.v = vec_sub(piy.v, pjy2.v);
v_dz_tmp.v = vec_sub(piz.v, pjz.v); v_dz.v = vec_sub(piz.v, pjz.v);
v_dz_tmp2.v = vec_sub(piz.v, pjz2.v); v_dz_2.v = vec_sub(piz.v, pjz2.v);
v_r2.v = vec_mul(v_dx_tmp.v, v_dx_tmp.v); v_r2.v = vec_mul(v_dx.v, v_dx.v);
v_r2_2.v = vec_mul(v_dx_tmp2.v, v_dx_tmp2.v); v_r2_2.v = vec_mul(v_dx_2.v, v_dx_2.v);
v_r2.v = vec_fma(v_dy_tmp.v, v_dy_tmp.v, v_r2.v); v_r2.v = vec_fma(v_dy.v, v_dy.v, v_r2.v);
v_r2_2.v = vec_fma(v_dy_tmp2.v, v_dy_tmp2.v, v_r2_2.v); v_r2_2.v = vec_fma(v_dy_2.v, v_dy_2.v, v_r2_2.v);
v_r2.v = vec_fma(v_dz_tmp.v, v_dz_tmp.v, v_r2.v); v_r2.v = vec_fma(v_dz.v, v_dz.v, v_r2.v);
v_r2_2.v = vec_fma(v_dz_tmp2.v, v_dz_tmp2.v, v_r2_2.v); v_r2_2.v = vec_fma(v_dz_2.v, v_dz_2.v, v_r2_2.v);
/* Form a mask from r2 < hig2 and r2 > 0.*/ /* Form a mask from r2 < hig2 and r2 > 0.*/
mask_t v_doi_mask, v_doi_mask_self_check, v_doi_mask2, mask_t v_doi_mask, v_doi_mask_self_check, v_doi_mask2,
...@@ -783,15 +528,15 @@ __attribute__((always_inline)) INLINE void runner_doself1_density_vec( ...@@ -783,15 +528,15 @@ __attribute__((always_inline)) INLINE void runner_doself1_density_vec(
/* If there are any interactions left pack interaction values into c2 /* If there are any interactions left pack interaction values into c2
* cache. */ * cache. */
if (doi_mask) { if (doi_mask) {
storeInteractions(doi_mask, pjd, &v_r2, &v_dx_tmp, &v_dy_tmp, &v_dz_tmp, storeInteractions(doi_mask, pjd, &v_r2, &v_dx, &v_dy, &v_dz,
cell_cache, &int_cache, &icount, &rhoSum, &rho_dhSum, cell_cache, &int_cache, &icount, &rhoSum, &rho_dhSum,
&wcountSum, &wcount_dhSum, &div_vSum, &curlvxSum, &wcountSum, &wcount_dhSum, &div_vSum, &curlvxSum,
&curlvySum, &curlvzSum, v_hi_inv, v_vix, v_viy, &curlvySum, &curlvzSum, v_hi_inv, v_vix, v_viy,
v_viz); v_viz);
} }
if (doi_mask2) { if (doi_mask2) {
storeInteractions(doi_mask2, pjd + VEC_SIZE, &v_r2_2, &v_dx_tmp2, storeInteractions(doi_mask2, pjd + VEC_SIZE, &v_r2_2, &v_dx_2,
&v_dy_tmp2, &v_dz_tmp2, cell_cache, &int_cache, &v_dy_2, &v_dz_2, cell_cache, &int_cache,
&icount, &rhoSum, &rho_dhSum, &wcountSum, &icount, &rhoSum, &rho_dhSum, &wcountSum,
&wcount_dhSum, &div_vSum, &curlvxSum, &curlvySum, &wcount_dhSum, &div_vSum, &curlvxSum, &curlvySum,
&curlvzSum, v_hi_inv, v_vix, v_viy, v_viz); &curlvzSum, v_hi_inv, v_vix, v_viy, v_viz);
...@@ -960,8 +705,7 @@ for (int pid = 0; pid < count; pid++) { ...@@ -960,8 +705,7 @@ for (int pid = 0; pid < count; pid++) {
* secondary cache.*/ * secondary cache.*/
for (int pjd = 0; pjd < count_align; pjd += (num_vec_proc * VEC_SIZE)) { for (int pjd = 0; pjd < count_align; pjd += (num_vec_proc * VEC_SIZE)) {
int cj_cache_idx = pjd; /* Load 1 set of vectors from the particle cache. */
/* Load 2 sets of vectors from the particle cache. */
pjx.v = vec_load(&cell_cache->x[pjd]); pjx.v = vec_load(&cell_cache->x[pjd]);
pjy.v = vec_load(&cell_cache->y[pjd]); pjy.v = vec_load(&cell_cache->y[pjd]);
pjz.v = vec_load(&cell_cache->z[pjd]); pjz.v = vec_load(&cell_cache->z[pjd]);
...@@ -969,15 +713,15 @@ for (int pid = 0; pid < count; pid++) { ...@@ -969,15 +713,15 @@ for (int pid = 0; pid < count; pid++) {
hjg2.v = vec_mul(vec_mul(hj.v, hj.v), kernel_gamma2_vec.v); hjg2.v = vec_mul(vec_mul(hj.v, hj.v), kernel_gamma2_vec.v);
/* Compute the pairwise distance. */ /* Compute the pairwise distance. */
vector v_dx_tmp, v_dy_tmp, v_dz_tmp; vector v_dx, v_dy, v_dz;
v_dx_tmp.v = vec_sub(pix.v, pjx.v); v_dx.v = vec_sub(pix.v, pjx.v);
v_dy_tmp.v = vec_sub(piy.v, pjy.v); v_dy.v = vec_sub(piy.v, pjy.v);
v_dz_tmp.v = vec_sub(piz.v, pjz.v); v_dz.v = vec_sub(piz.v, pjz.v);
v_r2.v = vec_mul(v_dx_tmp.v, v_dx_tmp.v); v_r2.v = vec_mul(v_dx.v, v_dx.v);
v_r2.v = vec_fma(v_dy_tmp.v, v_dy_tmp.v, v_r2.v); v_r2.v = vec_fma(v_dy.v, v_dy.v, v_r2.v);
v_r2.v = vec_fma(v_dz_tmp.v, v_dz_tmp.v, v_r2.v); v_r2.v = vec_fma(v_dz.v, v_dz.v, v_r2.v);
/* Form r2 > 0 mask, r2 < hig2 mask and r2 < hjg2 mask. */ /* Form r2 > 0 mask, r2 < hig2 mask and r2 < hjg2 mask. */
mask_t v_doi_mask, v_doi_mask_self_check; mask_t v_doi_mask, v_doi_mask_self_check;
...@@ -999,15 +743,15 @@ for (int pid = 0; pid < count; pid++) { ...@@ -999,15 +743,15 @@ for (int pid = 0; pid < count; pid++) {
* cache. */ * cache. */
if (doi_mask) { if (doi_mask) {
vector v_hj, v_hj_inv; vector v_hj, v_hj_inv;
v_hj.v = vec_load(&cell_cache->h[cj_cache_idx]); v_hj.v = vec_load(&cell_cache->h[pjd]);
v_hj_inv = vec_reciprocal(v_hj); v_hj_inv = vec_reciprocal(v_hj);
runner_iact_nonsym_1_vec_force( runner_iact_nonsym_1_vec_force(
&v_r2, &v_dx_tmp, &v_dy_tmp, &v_dz_tmp, v_vix, v_viy, v_viz, &v_r2, &v_dx, &v_dy, &v_dz, v_vix, v_viy, v_viz,
v_rhoi, v_grad_hi, v_pOrhoi2, v_balsara_i, v_ci, v_rhoi, v_grad_hi, v_pOrhoi2, v_balsara_i, v_ci,
&cell_cache->vx[cj_cache_idx], &cell_cache->vy[cj_cache_idx], &cell_cache->vx[pjd], &cell_cache->vy[pjd],
&cell_cache->vz[cj_cache_idx], &cell_cache->rho[cj_cache_idx], &cell_cache->grad_h[cj_cache_idx], &cell_cache->vz[pjd], &cell_cache->rho[pjd], &cell_cache->grad_h[pjd],
&cell_cache->pOrho2[cj_cache_idx], &cell_cache->balsara[cj_cache_idx], &cell_cache->soundspeed[cj_cache_idx], &cell_cache->m[cj_cache_idx], v_hi_inv, v_hj_inv, &a_hydro_xSum, &a_hydro_ySum, &a_hydro_zSum, &cell_cache->pOrho2[pjd], &cell_cache->balsara[pjd], &cell_cache->soundspeed[pjd], &cell_cache->m[pjd], v_hi_inv, v_hj_inv, &a_hydro_xSum, &a_hydro_ySum, &a_hydro_zSum,
&h_dtSum, &v_sigSum, &entropy_dtSum, v_doi_mask); &h_dtSum, &v_sigSum, &entropy_dtSum, v_doi_mask);
} }
...@@ -1023,242 +767,6 @@ for (int pid = 0; pid < count; pid++) { ...@@ -1023,242 +767,6 @@ for (int pid = 0; pid < count; pid++) {
} /* loop over all particles. */ } /* loop over all particles. */
TIMER_TOC(timer_doself_force);
#endif /* WITH_VECTORIZATION */
}
__attribute__((always_inline)) INLINE void runner_doself2_force_vec_2(
struct runner *r, struct cell *restrict c) {
#ifdef WITH_VECTORIZATION
const struct engine *e = r->e;
struct part *restrict pi;
int count_align;
const int num_vec_proc = 1;//2;
struct part *restrict parts = c->parts;
const int count = c->count;
vector v_hi, v_vix, v_viy, v_viz, v_hig2, v_r2;
vector v_rhoi, v_grad_hi, v_pOrhoi2, v_balsara_i, v_ci;
TIMER_TIC
if (!cell_is_active(c, e)) return;
if (!cell_are_part_drifted(c, e)) error("Interacting undrifted cell.");
/* Get the particle cache from the runner and re-allocate
* the cache if it is not big enough for the cell. */
struct cache *restrict cell_cache = &r->ci_cache;
if (cell_cache->count < count) {
cache_init(cell_cache, count);
}
/* Read the particles from the cell and store them locally in the cache. */
cache_read_force_particles(c, cell_cache);
#ifdef SWIFT_DEBUG_CHECKS
for (int i = 0; i < count; i++) {
pi = &c->parts[i];
/* Check that particles have been drifted to the current time */
if (pi->ti_drift != e->ti_current)
error("Particle pi not drifted to current time");
}
}
#endif
/* Create secondary cache to store particle interactions. */
struct c2_cache int_cache;
int icount = 0, icount_align = 0;
/* Loop over the particles in the cell. */
for (int pid = 0; pid < count; pid++) {
/* Get a pointer to the ith particle. */
pi = &parts[pid];
/* Is the ith particle active? */
if (!part_is_active(pi, e)) continue;
vector pix, piy, piz;
const float hi = cell_cache->h[pid];
/* Fill particle pi vectors. */
pix.v = vec_set1(cell_cache->x[pid]);
piy.v = vec_set1(cell_cache->y[pid]);
piz.v = vec_set1(cell_cache->z[pid]);
v_hi.v = vec_set1(hi);
v_vix.v = vec_set1(cell_cache->vx[pid]);
v_viy.v = vec_set1(cell_cache->vy[pid]);
v_viz.v = vec_set1(cell_cache->vz[pid]);
v_rhoi.v = vec_set1(cell_cache->rho[pid]);
v_grad_hi.v = vec_set1(cell_cache->grad_h[pid]);
v_pOrhoi2.v = vec_set1(cell_cache->pOrho2[pid]);
v_balsara_i.v = vec_set1(cell_cache->balsara[pid]);
v_ci.v = vec_set1(cell_cache->soundspeed[pid]);
const float hig2 = hi * hi * kernel_gamma2;
v_hig2.v = vec_set1(hig2);
/* Reset cumulative sums of update vectors. */
vector a_hydro_xSum, a_hydro_ySum, a_hydro_zSum, h_dtSum, v_sigSum,
entropy_dtSum;
/* Get the inverse of hi. */
vector v_hi_inv;
v_hi_inv = vec_reciprocal(v_hi);
a_hydro_xSum.v = vec_setzero();
a_hydro_ySum.v = vec_setzero();
a_hydro_zSum.v = vec_setzero();
h_dtSum.v = vec_setzero();
v_sigSum.v = vec_set1(pi->force.v_sig);
entropy_dtSum.v = vec_setzero();
/* Pad cache if there is a serial remainder. */
count_align = count;
int rem = count % (num_vec_proc * VEC_SIZE);
if (rem != 0) {
int pad = (num_vec_proc * VEC_SIZE) - rem;
count_align += pad;
/* Set positions to the same as particle pi so when the r2 > 0 mask is
* applied these extra contributions are masked out.*/
for (int i = count; i < count_align; i++) {
cell_cache->x[i] = pix.f[0];
cell_cache->y[i] = piy.f[0];
cell_cache->z[i] = piz.f[0];
cell_cache->h[i] = 1.f;
}
}
vector pjx, pjy, pjz, hj, hjg2;
//vector pjx_2, pjy_2, pjz_2, hj_2, hjg2_2, v_r2_2;
/* Find all of particle pi's interacions and store needed values in the
* secondary cache.*/
for (int pjd = 0; pjd < count_align; pjd += (num_vec_proc * VEC_SIZE)) {
/* Load 2 sets of vectors from the particle cache. */
pjx.v = vec_load(&cell_cache->x[pjd]);
//pjx_2.v = vec_load(&cell_cache->x[pjd + VEC_SIZE]);
pjy.v = vec_load(&cell_cache->y[pjd]);
//pjy_2.v = vec_load(&cell_cache->y[pjd + VEC_SIZE]);
pjz.v = vec_load(&cell_cache->z[pjd]);
//pjz_2.v = vec_load(&cell_cache->z[pjd + VEC_SIZE]);
hj.v = vec_load(&cell_cache->h[pjd]);
//hj_2.v = vec_load(&cell_cache->h[pjd + VEC_SIZE]);
hjg2.v = vec_mul(vec_mul(hj.v, hj.v), kernel_gamma2_vec.v);
//hjg2_2.v = vec_mul(vec_mul(hj_2.v, hj_2.v), kernel_gamma2_vec.v);
/* Compute the pairwise distance. */
vector v_dx_tmp, v_dy_tmp, v_dz_tmp;
//vector v_dx_tmp_2, v_dy_tmp_2, v_dz_tmp_2;
v_dx_tmp.v = vec_sub(pix.v, pjx.v);
//v_dx_tmp_2.v = vec_sub(pix.v, pjx_2.v);
v_dy_tmp.v = vec_sub(piy.v, pjy.v);
//v_dy_tmp_2.v = vec_sub(piy.v, pjy_2.v);
v_dz_tmp.v = vec_sub(piz.v, pjz.v);
//v_dz_tmp_2.v = vec_sub(piz.v, pjz_2.v);
v_r2.v = vec_mul(v_dx_tmp.v, v_dx_tmp.v);
//v_r2_2.v = vec_mul(v_dx_tmp_2.v, v_dx_tmp_2.v);
v_r2.v = vec_fma(v_dy_tmp.v, v_dy_tmp.v, v_r2.v);
//v_r2_2.v = vec_mul(v_dy_tmp_2.v, v_dy_tmp_2.v);
v_r2.v = vec_fma(v_dz_tmp.v, v_dz_tmp.v, v_r2.v);
//v_r2_2.v = vec_mul(v_dz_tmp_2.v, v_dz_tmp_2.v);
/* Form r2 > 0 mask, r2 < hig2 mask and r2 < hjg2 mask. */
mask_t v_doi_mask, v_doi_mask_self_check;
//mask_t v_doi_mask_2, v_doi_mask_self_check_2;
int doi_mask, doi_mask_self_check;
//int doi_mask_2, doi_mask_self_check_2;
/* Form r2 > 0 mask.*/
vec_create_mask(v_doi_mask_self_check, vec_cmp_gt(v_r2.v, vec_setzero()));
//vec_create_mask(v_doi_mask_self_check_2, vec_cmp_gt(v_r2_2.v, vec_setzero()));
/* Form a mask from r2 < hig2 mask and r2 < hjg2 mask. */
vector v_h2;
//vector v_h2_2;
v_h2.v = vec_fmax(v_hig2.v, hjg2.v);
//v_h2_2.v = vec_fmax(v_hig2.v, hjg2_2.v);
vec_create_mask(v_doi_mask, vec_cmp_lt(v_r2.v, v_h2.v));
//vec_create_mask(v_doi_mask_2, vec_cmp_lt(v_r2_2.v, v_h2_2.v));
/* Form integer masks. */
doi_mask_self_check = vec_form_int_mask(v_doi_mask_self_check);
//doi_mask_self_check_2 = vec_form_int_mask(v_doi_mask_self_check_2);
doi_mask = vec_form_int_mask(v_doi_mask);
//doi_mask_2 = vec_form_int_mask(v_doi_mask_2);
/* Combine all 3 masks. */
doi_mask = doi_mask & doi_mask_self_check;
//doi_mask_2 = doi_mask_2 & doi_mask_self_check_2;
/* If there are any interactions left pack interaction values into c2
* cache. */
if (doi_mask) {
storeForceInteractions(
doi_mask, pjd, &v_r2, &v_dx_tmp, &v_dy_tmp, &v_dz_tmp, cell_cache,
&int_cache, &icount, &a_hydro_xSum, &a_hydro_ySum, &a_hydro_zSum,
&h_dtSum, &v_sigSum, &entropy_dtSum, v_hi_inv, v_vix, v_viy, v_viz,
v_rhoi, v_grad_hi, v_pOrhoi2, v_balsara_i, v_ci, 2);
}
//if (doi_mask_2) {
// storeForceInteractions(
// doi_mask_2, pjd + VEC_SIZE, &v_r2_2, &v_dx_tmp_2, &v_dy_tmp_2, &v_dz_tmp_2, cell_cache,
// &int_cache, &icount, &a_hydro_xSum, &a_hydro_ySum, &a_hydro_zSum,
// &h_dtSum, &v_sigSum, &entropy_dtSum, v_hi_inv, v_vix, v_viy, v_viz,
// v_rhoi, v_grad_hi, v_pOrhoi2, v_balsara_i, v_ci, 2);
//}
} /* Loop over all other particles. */
/* Perform padded vector remainder interactions if any are present. */
calcRemForceInteractions(&int_cache, icount, &a_hydro_xSum, &a_hydro_ySum,
&a_hydro_zSum, &h_dtSum, &v_sigSum, &entropy_dtSum,
v_hi_inv, v_vix, v_viy, v_viz, v_rhoi, v_grad_hi,
v_pOrhoi2, v_balsara_i, v_ci, &icount_align, 2);
/* Initialise masks to true in case remainder interactions have been
* performed. */
mask_t int_mask, int_mask2;
vec_init_mask_true(int_mask);
vec_init_mask_true(int_mask2);
/* Perform interaction with 2 vectors. */
for (int pjd = 0; pjd < icount_align; pjd += (2 * VEC_SIZE)) {
runner_iact_nonsym_2_vec_force(
&int_cache.r2q[pjd], &int_cache.dxq[pjd], &int_cache.dyq[pjd],
&int_cache.dzq[pjd], v_vix, v_viy, v_viz, v_rhoi, v_grad_hi, v_pOrhoi2,
v_balsara_i, v_ci, &int_cache.vxq[pjd], &int_cache.vyq[pjd],
&int_cache.vzq[pjd], &int_cache.rhoq[pjd], &int_cache.grad_hq[pjd],
&int_cache.pOrho2q[pjd], &int_cache.balsaraq[pjd],
&int_cache.soundspeedq[pjd], &int_cache.mq[pjd], v_hi_inv,
&int_cache.h_invq[pjd], &a_hydro_xSum, &a_hydro_ySum, &a_hydro_zSum,
&h_dtSum, &v_sigSum, &entropy_dtSum, int_mask, int_mask2, 0);
}
VEC_HADD(a_hydro_xSum, pi->a_hydro[0]);
VEC_HADD(a_hydro_ySum, pi->a_hydro[1]);
VEC_HADD(a_hydro_zSum, pi->a_hydro[2]);
VEC_HADD(h_dtSum, pi->force.h_dt);
VEC_HMAX(v_sigSum, pi->force.v_sig);
VEC_HADD(entropy_dtSum, pi->entropy_dt);
/* Reset interaction count. */
icount = 0;
} /* loop over all particles. */
TIMER_TOC(timer_doself_force); TIMER_TOC(timer_doself_force);
#endif /* WITH_VECTORIZATION */ #endif /* WITH_VECTORIZATION */
} }
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment