Skip to content
Snippets Groups Projects
Commit 0a5e5866 authored by Loic Hausammann's avatar Loic Hausammann
Browse files

Add supernovae feedback example

parent 3a369453
No related branches found
No related tags found
1 merge request!683Implement feedback loop
# Define the system of units to use internally.
InternalUnitSystem:
UnitMass_in_cgs: 1 # Grams
UnitLength_in_cgs: 1 # Centimeters
UnitVelocity_in_cgs: 1 # Centimeters per second
UnitCurrent_in_cgs: 1 # Amperes
UnitTemp_in_cgs: 1 # Kelvin
# Values of some physical constants
PhysicalConstants:
G: 0 # (Optional) Overwrite the value of Newton's constant used internally by the code.
# Parameters governing the time integration
TimeIntegration:
time_begin: 0. # The starting time of the simulation (in internal units).
time_end: 5e-2 # The end time of the simulation (in internal units).
dt_min: 1e-7 # The minimal time-step size of the simulation (in internal units).
dt_max: 1e-4 # The maximal time-step size of the simulation (in internal units).
# Parameters governing the snapshots
Snapshots:
basename: SN_feedback # Common part of the name of output files
time_first: 0. # Time of the first output (in internal units)
delta_time: 1e-2 # Time difference between consecutive outputs (in internal units)
compression: 1
# Parameters governing the conserved quantities statistics
Statistics:
delta_time: 1e-3 # Time between statistics output
# Parameters for the hydrodynamics scheme
SPH:
resolution_eta: 1.2348 # Target smoothing length in units of the mean inter-particle separation (1.2348 == 48Ngbs with the cubic spline kernel).
CFL_condition: 0.1 # Courant-Friedrich-Levy condition for time integration.
# Parameters related to the initial conditions
InitialConditions:
file_name: ./SN_feedback.hdf5
smoothing_length_scaling: 1.
periodic: 1 # Are we running with periodic ICs?
# Parameters for the stellar models
Stars:
resolution_eta: 1.2348 # Target smoothing length in units of the mean inter-particle separation (1.2348 == 48Ngbs with the cubic spline kernel).
#!/bin/bash
wget http://virgodb.cosma.dur.ac.uk/swift-webstorage/ICs/glassCube_64.hdf5
###############################################################################
# This file is part of SWIFT.
# Copyright (c) 2016 Matthieu Schaller (matthieu.schaller@durham.ac.uk)
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published
# by the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
##############################################################################
import h5py
from numpy import *
# Generates a swift IC file for the Sedov blast test in a periodic cubic box
# Parameters
gamma = 5./3. # Gas adiabatic index
rho0 = 1. # Background density
P0 = 1.e-6 # Background pressure
E0= 1. # Energy of the explosion
N_inject = 15 # Number of particles in which to inject energy
fileName = "SN_feedback.hdf5"
#---------------------------------------------------
glass = h5py.File("glassCube_64.hdf5", "r")
# Read particle positions and h from the glass
pos = glass["/PartType0/Coordinates"][:,:]
eps = 1e-6
pos = (pos - pos.min()) / (pos.max() - pos.min() + eps)
h = glass["/PartType0/SmoothingLength"][:] * 0.3 * 3.3
numPart = size(h)
vol = 1.
Boxsize = 1.
# Generate extra arrays
v = zeros((numPart, 3))
ids = linspace(1, numPart, numPart)
m = zeros(numPart)
u = zeros(numPart)
r = zeros(numPart)
r = sqrt((pos[:,0] - 0.5)**2 + (pos[:,1] - 0.5)**2 + (pos[:,2] - 0.5)**2)
m[:] = rho0 * vol / numPart
u[:] = P0 / (rho0 * (gamma - 1))
#--------------------------------------------------
star_pos = zeros((1, 3))
star_pos[:,:] = 0.5 * Boxsize
star_v = zeros((1, 3))
star_v[:,:] = 0.
# increase mass to keep it at center
star_m = 1e3 * array([rho0 * vol / numPart])
star_ids = array([numPart + 1])
star_h = array([h.max()])
#--------------------------------------------------
#File
file = h5py.File(fileName, 'w')
# Header
grp = file.create_group("/Header")
grp.attrs["BoxSize"] = [Boxsize]*3
grp.attrs["NumPart_Total"] = [numPart, 0, 0, 0, 1, 0]
grp.attrs["NumPart_Total_HighWord"] = [0, 0, 0, 0, 0, 0]
grp.attrs["NumPart_ThisFile"] = [numPart, 0, 0, 0, 1, 0]
grp.attrs["Time"] = 0.0
grp.attrs["NumFilesPerSnapshot"] = 1
grp.attrs["MassTable"] = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
grp.attrs["Flag_Entropy_ICs"] = 0
grp.attrs["Dimension"] = 3
#Runtime parameters
grp = file.create_group("/RuntimePars")
grp.attrs["PeriodicBoundariesOn"] = 0
#Units
grp = file.create_group("/Units")
grp.attrs["Unit length in cgs (U_L)"] = 1.
grp.attrs["Unit mass in cgs (U_M)"] = 1.
grp.attrs["Unit time in cgs (U_t)"] = 1.
grp.attrs["Unit current in cgs (U_I)"] = 1.
grp.attrs["Unit temperature in cgs (U_T)"] = 1.
#Particle group
grp = file.create_group("/PartType0")
grp.create_dataset('Coordinates', data=pos, dtype='d')
grp.create_dataset('Velocities', data=v, dtype='f')
grp.create_dataset('Masses', data=m, dtype='f')
grp.create_dataset('SmoothingLength', data=h, dtype='f')
grp.create_dataset('InternalEnergy', data=u, dtype='f')
grp.create_dataset('ParticleIDs', data=ids, dtype='L')
# stellar group
grp = file.create_group("/PartType4")
grp.create_dataset("Coordinates", data=star_pos, dtype="d")
grp.create_dataset('Velocities', data=star_v, dtype='f')
grp.create_dataset('Masses', data=star_m, dtype='f')
grp.create_dataset('SmoothingLength', data=star_h, dtype='f')
grp.create_dataset('ParticleIDs', data=star_ids, dtype='L')
file.close()
#!/bin/bash
# Generate the initial conditions if they are not present.
if [ ! -e glassCube_64.hdf5 ]
then
echo "Fetching initial glass file for the Supernovae feedback example..."
./getGlass.sh
fi
if [ ! -e SN_feedback.hdf5 ]
then
echo "Generating initial conditions for the Supernovae feedback example..."
python makeIC.py
fi
# Run SWIFT
../swift -g -b -s -S -t 4 SN_feedback.yml 2>&1 | tee output.log
# Plot the solution
# TODO
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment