Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
SWIFTsim
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Deploy
Releases
Model registry
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
SWIFT
SWIFTsim
Commits
09d36187
Commit
09d36187
authored
7 years ago
by
Josh Borrow
Browse files
Options
Downloads
Patches
Plain Diff
Minor fixes to the formatting of equations in the theory for P-U
parent
c7960649
No related branches found
No related tags found
1 merge request
!540
Add Pressure-Energy (P-U) SPH
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
theory/SPH/Flavours/sph_flavours.tex
+9
-8
9 additions, 8 deletions
theory/SPH/Flavours/sph_flavours.tex
with
9 additions
and
8 deletions
theory/SPH/Flavours/sph_flavours.tex
+
9
−
8
View file @
09d36187
...
...
@@ -386,14 +386,14 @@ evolution of the internal energy, as opposed to the entropy.
For P-U, the following choice of parameters in the formalism of
\S
\ref
{
sec:derivation
}
provides convenient properties:
\begin{align}
x
_
i =
&
(
\gamma
- 1) m
_
i u
_
i
~
,
\\
\tilde
{
x
}_
i =
&
1,
x
_
i =
&
~
(
\gamma
- 1) m
_
i u
_
i,
\\
\tilde
{
x
}_
i =
&
~
1,
\label
{
eq:sph:pu:xichoice
}
\end{align}
leading to the following requirements to ensure correct volume elements:
\begin{align}
y
_
i =
&
\sum
_{
j
}
(
\gamma
- 1) m
_
j u
_
j W
_{
ij
}
=
\bar
{
P
}_
i,
\\
\tilde
{
y
}_
i =
&
\sum
_{
j
}
W
_{
ij
}
=
\bar
{
n
}_
i,
\\
\tilde
{
y
}_
i =
&
\sum
_{
j
}
W
_{
ij
}
=
\bar
{
n
}_
i,
\label
{
eq:sph:pu:yichoice
}
\end{align}
with the resulting variables representing a smoothed pressure and particle
...
...
@@ -401,8 +401,8 @@ number density. This choice of variables leads to the following equation of
motion:
\begin{align}
\frac
{
\mathrm
{
d
}
\mathbf
{
v
}_
i
}{
\mathrm
{
d
}
t
}
= -
\sum
_
j (
\gamma
- 1)
^
2 m
_
j u
_
j u
_
i
&
\left
[
\frac
{
f
_{
ij
}}{
\bar
{
P
}_
i
}
\nabla
_
i W
_{
ij
}
(h
_
i) ~+
\right
.
\\
&
\frac
{
f
_{
ji
}}{
\bar
{
P
}_
j
}
\nabla
_
i W
_{
ji
}
(h
_
j) ~+
\\
&
\left
[
\frac
{
f
_{
ij
}}{
\bar
{
P
}_
i
}
\nabla
_
i W
_{
ij
}
(h
_
i) ~+
\right
.
\nonumber
\\
&
\frac
{
f
_{
ji
}}{
\bar
{
P
}_
j
}
\nabla
_
i W
_{
ji
}
(h
_
j) ~+
\nonumber
\\
&
\left
.
\nu
_{
ij
}
\bar
{
\nabla
_
i W
_{
ij
}}
\right
]~.
\label
{
eq:sph:pu:eom
}
\end{align}
...
...
@@ -411,9 +411,10 @@ the final term.
The
$
h
$
-terms are given as
\begin{align}
f
_{
ij
}
= 1 -
&
\left
[
\frac
{
h
_
i
}{
n
_
d (
\gamma
- 1)
\bar
{
n
}_
i
\left\{
m
_
j u
_
j
\right\}
}
\frac
{
\partial
\bar
{
P
}_
i
}{
\partial
h
_
i
}
\right
]
\times
\\
&
\left
( 1 +
\frac
{
h
_
i
}{
n
_
d
\bar
{
n
}_
i
}
\frac
{
\partial
\bar
{
n
}_
i
}{
\partial
h
_
i
}
\right
)
^{
-1
}
f
_{
ij
}
= 1 -
\left
[
\frac
{
h
_
i
}{
n
_
d (
\gamma
- 1)
\bar
{
n
}_
i
\left\{
m
_
j u
_
j
\right\}
}
\frac
{
\partial
\bar
{
P
}_
i
}{
\partial
h
_
i
}
\right
]
\left
( 1 +
\frac
{
h
_
i
}{
n
_
d
\bar
{
n
}_
i
}
\frac
{
\partial
\bar
{
n
}_
i
}{
\partial
h
_
i
}
\right
)
^{
-1
}
\label
{
eq:sph:pu:fij
}
\end{align}
with
$
n
_
d
$
the number of dimensions. In practice, the majority of
$
f
_{
ij
}$
is
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment