Skip to content
GitLab
Projects
Groups
Snippets
/
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Menu
Open sidebar
SWIFT
SWIFTsim
Commits
02b12046
Commit
02b12046
authored
Aug 18, 2017
by
James Willis
Browse files
Use intrinsics in arithmetic operations to support AVX-512.
parent
da8b0804
Changes
1
Hide whitespace changes
Inline
Side-by-side
src/hydro/Gadget2/hydro_iact.h
View file @
02b12046
...
...
@@ -1171,7 +1171,7 @@ __attribute__((always_inline)) INLINE static void runner_iact_nonsym_vec_force(
#ifdef WITH_VECTORIZATION
__attribute__
((
always_inline
))
INLINE
static
void
runner_iact_nonsym_1_vec_force
(
float
*
R
2
,
float
*
D
x
,
float
*
D
y
,
float
*
D
z
,
vector
vix
,
vector
viy
,
vector
*
r
2
,
vector
*
d
x
,
vector
*
d
y
,
vector
*
d
z
,
vector
vix
,
vector
viy
,
vector
viz
,
vector
pirho
,
vector
grad_hi
,
vector
piPOrho2
,
vector
balsara_i
,
vector
ci
,
float
*
Vjx
,
float
*
Vjy
,
float
*
Vjz
,
float
*
Pjrho
,
float
*
Grad_hj
,
float
*
PjPOrho2
,
float
*
Balsara_j
,
float
*
Cj
,
...
...
@@ -1181,8 +1181,7 @@ runner_iact_nonsym_1_vec_force(
#ifdef WITH_VECTORIZATION
vector
r
,
r2
,
ri
;
vector
dx
,
dy
,
dz
;
vector
r
,
ri
;
vector
vjx
,
vjy
,
vjz
;
vector
pjrho
,
grad_hj
,
pjPOrho2
,
balsara_j
,
cj
,
mj
,
hj_inv
;
vector
xi
,
xj
;
...
...
@@ -1195,11 +1194,6 @@ runner_iact_nonsym_1_vec_force(
vector
rho_ij
,
visc
,
visc_term
,
sph_term
,
acc
,
entropy_dt
;
/* Fill vectors. */
r2
.
v
=
vec_load
(
R2
);
dx
.
v
=
vec_load
(
Dx
);
dy
.
v
=
vec_load
(
Dy
);
dz
.
v
=
vec_load
(
Dz
);
vjx
.
v
=
vec_load
(
Vjx
);
vjy
.
v
=
vec_load
(
Vjy
);
vjz
.
v
=
vec_load
(
Vjz
);
...
...
@@ -1218,8 +1212,8 @@ runner_iact_nonsym_1_vec_force(
balsara
.
v
=
balsara_i
.
v
+
balsara_j
.
v
;
/* Get the radius and inverse radius. */
ri
=
vec_reciprocal_sqrt
(
r2
);
r
.
v
=
r2
.
v
*
ri
.
v
;
ri
=
vec_reciprocal_sqrt
(
*
r2
);
r
.
v
=
r2
->
v
*
ri
.
v
;
/* Get the kernel for hi. */
hid_inv
=
pow_dimension_plus_one_vec
(
hi_inv
);
...
...
@@ -1237,8 +1231,8 @@ runner_iact_nonsym_1_vec_force(
wj_dr
.
v
=
hjd_inv
.
v
*
wj_dx
.
v
;
/* Compute dv dot r. */
dvdr
.
v
=
((
vix
.
v
-
vjx
.
v
)
*
dx
.
v
)
+
((
viy
.
v
-
vjy
.
v
)
*
dy
.
v
)
+
((
viz
.
v
-
vjz
.
v
)
*
dz
.
v
);
dvdr
.
v
=
((
vix
.
v
-
vjx
.
v
)
*
dx
->
v
)
+
((
viy
.
v
-
vjy
.
v
)
*
dy
->
v
)
+
((
viz
.
v
-
vjz
.
v
)
*
dz
->
v
);
/* Compute the relative velocity. (This is 0 if the particles move away from
* each other and negative otherwise) */
...
...
@@ -1263,9 +1257,9 @@ runner_iact_nonsym_1_vec_force(
acc
.
v
=
visc_term
.
v
+
sph_term
.
v
;
/* Use the force, Luke! */
piax
.
v
=
mj
.
v
*
dx
.
v
*
acc
.
v
;
piay
.
v
=
mj
.
v
*
dy
.
v
*
acc
.
v
;
piaz
.
v
=
mj
.
v
*
dz
.
v
*
acc
.
v
;
piax
.
v
=
mj
.
v
*
dx
->
v
*
acc
.
v
;
piay
.
v
=
mj
.
v
*
dy
->
v
*
acc
.
v
;
piaz
.
v
=
mj
.
v
*
dz
->
v
*
acc
.
v
;
/* Get the time derivative for h. */
pih_dt
.
v
=
mj
.
v
*
dvdr
.
v
*
ri
.
v
/
pjrho
.
v
*
wi_dr
.
v
;
...
...
@@ -1304,10 +1298,10 @@ runner_iact_nonsym_2_vec_force(
#ifdef WITH_VECTORIZATION
vector
r
,
r2
,
ri
;
vector
dx
,
dy
,
dz
;
vector
dx
,
dy
,
dz
,
dvx
,
dvy
,
dvz
;
vector
vjx
,
vjy
,
vjz
;
vector
pjrho
,
grad_hj
,
pjPOrho2
,
balsara_j
,
cj
,
mj
,
hj_inv
;
vector
x
i
,
x
j
;
vector
u
i
,
u
j
;
vector
hid_inv
,
hjd_inv
;
vector
wi_dx
,
wj_dx
,
wi_dr
,
wj_dr
,
dvdr
;
vector
piax
,
piay
,
piaz
;
...
...
@@ -1317,10 +1311,10 @@ runner_iact_nonsym_2_vec_force(
vector
rho_ij
,
visc
,
visc_term
,
sph_term
,
acc
,
entropy_dt
;
vector
r_2
,
r2_2
,
ri_2
;
vector
dx_2
,
dy_2
,
dz_2
;
vector
dx_2
,
dy_2
,
dz_2
,
dvx_2
,
dvy_2
,
dvz_2
;
vector
vjx_2
,
vjy_2
,
vjz_2
;
vector
pjrho_2
,
grad_hj_2
,
pjPOrho2_2
,
balsara_j_2
,
cj_2
,
mj_2
,
hj_inv_2
;
vector
x
i_2
,
x
j_2
;
vector
u
i_2
,
u
j_2
;
vector
hjd_inv_2
;
vector
wi_dx_2
,
wj_dx_2
,
wi_dr_2
,
wj_dr_2
,
dvdr_2
;
vector
piax_2
,
piay_2
,
piaz_2
;
...
...
@@ -1330,128 +1324,145 @@ runner_iact_nonsym_2_vec_force(
vector
rho_ij_2
,
visc_2
,
visc_term_2
,
sph_term_2
,
acc_2
,
entropy_dt_2
;
/* Fill vectors. */
r2
.
v
=
vec_load
(
R2
);
dx
.
v
=
vec_load
(
Dx
);
dy
.
v
=
vec_load
(
Dy
);
dz
.
v
=
vec_load
(
Dz
);
mj
.
v
=
vec_load
(
Mj
);
mj_2
.
v
=
vec_load
(
&
Mj
[
VEC_SIZE
]);
vjx
.
v
=
vec_load
(
Vjx
);
vjx_2
.
v
=
vec_load
(
&
Vjx
[
VEC_SIZE
]);
vjy
.
v
=
vec_load
(
Vjy
);
vjy_2
.
v
=
vec_load
(
&
Vjy
[
VEC_SIZE
]);
vjz
.
v
=
vec_load
(
Vjz
);
mj
.
v
=
vec_load
(
Mj
);
pjrho
.
v
=
vec_load
(
Pjrho
);
grad_hj
.
v
=
vec_load
(
Grad_hj
);
pjPOrho2
.
v
=
vec_load
(
PjPOrho2
);
balsara_j
.
v
=
vec_load
(
Balsara_j
);
cj
.
v
=
vec_load
(
Cj
);
hj_inv
.
v
=
vec_load
(
Hj_inv
);
fac_mu
.
v
=
vec_set1
(
1
.
f
);
/* Will change with cosmological integration */
r2_2
.
v
=
vec_load
(
&
R2
[
VEC_SIZE
]);
vjz_2
.
v
=
vec_load
(
&
Vjz
[
VEC_SIZE
]);
dx
.
v
=
vec_load
(
Dx
);
dx_2
.
v
=
vec_load
(
&
Dx
[
VEC_SIZE
]);
dy
.
v
=
vec_load
(
Dy
);
dy_2
.
v
=
vec_load
(
&
Dy
[
VEC_SIZE
]);
dz
.
v
=
vec_load
(
Dz
);
dz_2
.
v
=
vec_load
(
&
Dz
[
VEC_SIZE
]);
vjx_2
.
v
=
vec_load
(
&
Vjx
[
VEC_SIZE
]);
vjy_2
.
v
=
vec_load
(
&
Vjy
[
VEC_SIZE
]);
vjz_2
.
v
=
vec_load
(
&
Vjz
[
VEC_SIZE
]);
mj_2
.
v
=
vec_load
(
&
Mj
[
VEC_SIZE
]);
/* Get the radius and inverse radius. */
r2
.
v
=
vec_load
(
R2
);
r2_2
.
v
=
vec_load
(
&
R2
[
VEC_SIZE
]);
ri
=
vec_reciprocal_sqrt
(
r2
);
ri_2
=
vec_reciprocal_sqrt
(
r2_2
);
r
.
v
=
vec_mul
(
r2
.
v
,
ri
.
v
);
r_2
.
v
=
vec_mul
(
r2_2
.
v
,
ri_2
.
v
);
/* Get remaining properties. */
pjrho
.
v
=
vec_load
(
Pjrho
);
pjrho_2
.
v
=
vec_load
(
&
Pjrho
[
VEC_SIZE
]);
grad_hj
.
v
=
vec_load
(
Grad_hj
);
grad_hj_2
.
v
=
vec_load
(
&
Grad_hj
[
VEC_SIZE
]);
pjPOrho2
.
v
=
vec_load
(
PjPOrho2
);
pjPOrho2_2
.
v
=
vec_load
(
&
PjPOrho2
[
VEC_SIZE
]);
balsara_j
.
v
=
vec_load
(
Balsara_j
);
balsara_j_2
.
v
=
vec_load
(
&
Balsara_j
[
VEC_SIZE
]);
cj
.
v
=
vec_load
(
Cj
);
cj_2
.
v
=
vec_load
(
&
Cj
[
VEC_SIZE
]);
hj_inv
.
v
=
vec_load
(
Hj_inv
);
hj_inv_2
.
v
=
vec_load
(
&
Hj_inv
[
VEC_SIZE
]);
/* Load stuff. */
balsara
.
v
=
balsara_i
.
v
+
balsara_j
.
v
;
balsara_2
.
v
=
balsara_i
.
v
+
balsara_j_2
.
v
;
fac_mu
.
v
=
vec_set1
(
1
.
f
);
/* Will change with cosmological integration */
/* Get the radius and inverse radius. */
ri
=
vec_reciprocal_sqrt
(
r2
);
ri_2
=
vec_reciprocal_sqrt
(
r2_2
);
r
.
v
=
r2
.
v
*
ri
.
v
;
r_2
.
v
=
r2_2
.
v
*
ri_2
.
v
;
/* Find the balsara switch. */
balsara
.
v
=
vec_add
(
balsara_i
.
v
,
balsara_j
.
v
);
balsara_2
.
v
=
vec_add
(
balsara_i
.
v
,
balsara_j_2
.
v
);
/* Get the kernel for hi. */
hid_inv
=
pow_dimension_plus_one_vec
(
hi_inv
);
x
i
.
v
=
r
.
v
*
hi_inv
.
v
;
x
i_2
.
v
=
r_2
.
v
*
hi_inv
.
v
;
kernel_eval_dWdx_force_vec
(
&
x
i
,
&
wi_dx
);
kernel_eval_dWdx_force_vec
(
&
x
i_2
,
&
wi_dx_2
);
wi_dr
.
v
=
hid_inv
.
v
*
wi_dx
.
v
;
wi_dr_2
.
v
=
hid_inv
.
v
*
wi_dx_2
.
v
;
u
i
.
v
=
vec_mul
(
r
.
v
,
hi_inv
.
v
)
;
u
i_2
.
v
=
vec_mul
(
r_2
.
v
,
hi_inv
.
v
)
;
kernel_eval_dWdx_force_vec
(
&
u
i
,
&
wi_dx
);
kernel_eval_dWdx_force_vec
(
&
u
i_2
,
&
wi_dx_2
);
wi_dr
.
v
=
vec_mul
(
hid_inv
.
v
,
wi_dx
.
v
)
;
wi_dr_2
.
v
=
vec_mul
(
hid_inv
.
v
,
wi_dx_2
.
v
)
;
/* Get the kernel for hj. */
hjd_inv
=
pow_dimension_plus_one_vec
(
hj_inv
);
hjd_inv_2
=
pow_dimension_plus_one_vec
(
hj_inv_2
);
x
j
.
v
=
r
.
v
*
hj_inv
.
v
;
x
j_2
.
v
=
r_2
.
v
*
hj_inv_2
.
v
;
u
j
.
v
=
vec_mul
(
r
.
v
,
hj_inv
.
v
)
;
u
j_2
.
v
=
vec_mul
(
r_2
.
v
,
hj_inv_2
.
v
)
;
/* Calculate the kernel for two particles. */
kernel_eval_dWdx_force_vec
(
&
x
j
,
&
wj_dx
);
kernel_eval_dWdx_force_vec
(
&
x
j_2
,
&
wj_dx_2
);
kernel_eval_dWdx_force_vec
(
&
u
j
,
&
wj_dx
);
kernel_eval_dWdx_force_vec
(
&
u
j_2
,
&
wj_dx_2
);
wj_dr
.
v
=
hjd_inv
.
v
*
wj_dx
.
v
;
wj_dr_2
.
v
=
hjd_inv_2
.
v
*
wj_dx_2
.
v
;
wj_dr
.
v
=
vec_mul
(
hjd_inv
.
v
,
wj_dx
.
v
)
;
wj_dr_2
.
v
=
vec_mul
(
hjd_inv_2
.
v
,
wj_dx_2
.
v
)
;
/* Compute dv. */
dvx
.
v
=
vec_sub
(
vix
.
v
,
vjx
.
v
);
dvx_2
.
v
=
vec_sub
(
vix
.
v
,
vjx_2
.
v
);
dvy
.
v
=
vec_sub
(
viy
.
v
,
vjy
.
v
);
dvy_2
.
v
=
vec_sub
(
viy
.
v
,
vjy_2
.
v
);
dvz
.
v
=
vec_sub
(
viz
.
v
,
vjz
.
v
);
dvz_2
.
v
=
vec_sub
(
viz
.
v
,
vjz_2
.
v
);
/* Compute dv dot r. */
dvdr
.
v
=
((
vix
.
v
-
vjx
.
v
)
*
dx
.
v
)
+
((
viy
.
v
-
vjy
.
v
)
*
dy
.
v
)
+
((
viz
.
v
-
vjz
.
v
)
*
dz
.
v
);
dvdr_2
.
v
=
((
vix
.
v
-
vjx_2
.
v
)
*
dx_2
.
v
)
+
((
viy
.
v
-
vjy_2
.
v
)
*
dy_2
.
v
)
+
((
viz
.
v
-
vjz_2
.
v
)
*
dz_2
.
v
);
dvdr
.
v
=
vec_fma
(
dvx
.
v
,
dx
.
v
,
vec_fma
(
dvy
.
v
,
dy
.
v
,
vec_mul
(
dvz
.
v
,
dz
.
v
)));
dvdr_2
.
v
=
vec_fma
(
dvx_2
.
v
,
dx_2
.
v
,
vec_fma
(
dvy_2
.
v
,
dy_2
.
v
,
vec_mul
(
dvz_2
.
v
,
dz_2
.
v
)));
/* Compute the relative velocity. (This is 0 if the particles move away from
* each other and negative otherwise) */
omega_ij
.
v
=
vec_fmin
(
dvdr
.
v
,
vec_setzero
());
omega_ij_2
.
v
=
vec_fmin
(
dvdr_2
.
v
,
vec_setzero
());
mu_ij
.
v
=
fac_mu
.
v
*
ri
.
v
*
omega_ij
.
v
;
/* This is 0 or negative */
mu_ij_2
.
v
=
fac_mu
.
v
*
ri_2
.
v
*
omega_ij_2
.
v
;
/* This is 0 or negative */
mu_ij
.
v
=
vec_mul
(
fac_mu
.
v
,
vec_mul
(
ri
.
v
,
omega_ij
.
v
))
;
/* This is 0 or negative */
mu_ij_2
.
v
=
vec_mul
(
fac_mu
.
v
,
vec_mul
(
ri_2
.
v
,
omega_ij_2
.
v
))
;
/* This is 0 or negative */
/* Compute signal velocity */
v_sig
.
v
=
ci
.
v
+
cj
.
v
-
vec_set1
(
3
.
0
f
)
*
mu_ij
.
v
;
v_sig_2
.
v
=
ci
.
v
+
cj_2
.
v
-
vec_set1
(
3
.
0
f
)
*
mu_ij_2
.
v
;
v_sig
.
v
=
vec_fnma
(
vec_set1
(
3
.
f
)
,
mu_ij
.
v
,
vec_add
(
ci
.
v
,
cj
.
v
))
;
v_sig_2
.
v
=
vec_fnma
(
vec_set1
(
3
.
f
)
,
mu_ij_2
.
v
,
vec_add
(
ci
.
v
,
cj_2
.
v
))
;
/* Now construct the full viscosity term */
rho_ij
.
v
=
vec_set1
(
0
.
5
f
)
*
(
pirho
.
v
+
pjrho
.
v
);
rho_ij_2
.
v
=
vec_set1
(
0
.
5
f
)
*
(
pirho
.
v
+
pjrho_2
.
v
);
visc
.
v
=
vec_set1
(
-
0
.
25
f
)
*
vec_set1
(
const_viscosity_alpha
)
*
v_sig
.
v
*
mu_ij
.
v
*
balsara
.
v
/
rho_ij
.
v
;
visc_2
.
v
=
vec_set1
(
-
0
.
25
f
)
*
vec_set1
(
const_viscosity_alpha
)
*
v_sig_2
.
v
*
mu_ij_2
.
v
*
balsara_2
.
v
/
rho_ij_2
.
v
;
rho_ij
.
v
=
vec_mul
(
vec_set1
(
0
.
5
f
),
vec_add
(
pirho
.
v
,
pjrho
.
v
));
rho_ij_2
.
v
=
vec_mul
(
vec_set1
(
0
.
5
f
),
vec_add
(
pirho
.
v
,
pjrho_2
.
v
));
vector
const_viscosity_alpha_fac
;
const_viscosity_alpha_fac
.
v
=
vec_set1
(
-
0
.
25
f
*
const_viscosity_alpha
);
visc
.
v
=
vec_div
(
vec_mul
(
const_viscosity_alpha_fac
.
v
,
vec_mul
(
v_sig
.
v
,
vec_mul
(
mu_ij
.
v
,
balsara
.
v
))),
rho_ij
.
v
);
visc_2
.
v
=
vec_div
(
vec_mul
(
const_viscosity_alpha_fac
.
v
,
vec_mul
(
v_sig_2
.
v
,
vec_mul
(
mu_ij_2
.
v
,
balsara_2
.
v
))),
rho_ij_2
.
v
);
/* Now, convolve with the kernel */
visc_term
.
v
=
vec_set1
(
0
.
5
f
)
*
visc
.
v
*
(
wi_dr
.
v
+
wj_dr
.
v
)
*
ri
.
v
;
visc_term_2
.
v
=
vec_set1
(
0
.
5
f
)
*
visc_2
.
v
*
(
wi_dr_2
.
v
+
wj_dr_2
.
v
)
*
ri_2
.
v
;
visc_term
.
v
=
vec_mul
(
vec_set1
(
0
.
5
f
),
vec_mul
(
visc
.
v
,
vec_mul
(
vec_add
(
wi_dr
.
v
,
wj_dr
.
v
),
ri
.
v
)));
visc_term_2
.
v
=
vec_mul
(
vec_set1
(
0
.
5
f
),
vec_mul
(
visc_2
.
v
,
vec_mul
(
vec_add
(
wi_dr_2
.
v
,
wj_dr_2
.
v
),
ri_2
.
v
)));
vector
grad_hi_mul_piPOrho2
;
grad_hi_mul_piPOrho2
.
v
=
vec_mul
(
grad_hi
.
v
,
piPOrho2
.
v
);
sph_term
.
v
=
(
grad_hi
.
v
*
piPOrho2
.
v
*
wi_dr
.
v
+
grad_hj
.
v
*
pjPOrho2
.
v
*
wj_dr
.
v
)
*
ri
.
v
;
sph_term_2
.
v
=
(
grad_hi
.
v
*
piPOrho2
.
v
*
wi_dr_2
.
v
+
grad_hj_2
.
v
*
pjPOrho2_2
.
v
*
wj_dr_2
.
v
)
*
ri_2
.
v
;
vec_mul
(
vec_fma
(
grad_hi_mul_piPOrho2
.
v
,
wi_dr
.
v
,
vec_mul
(
grad_hj
.
v
,
vec_mul
(
pjPOrho2
.
v
,
wj_dr
.
v
))),
ri
.
v
);
sph_term_2
.
v
=
vec_mul
(
vec_fma
(
grad_hi_mul_piPOrho2
.
v
,
wi_dr_2
.
v
,
vec_mul
(
grad_hj_2
.
v
,
vec_mul
(
pjPOrho2_2
.
v
,
wj_dr_2
.
v
))),
ri_2
.
v
);
/* Eventually get the acceleration */
acc
.
v
=
visc_term
.
v
+
sph_term
.
v
;
acc_2
.
v
=
visc_term_2
.
v
+
sph_term_2
.
v
;
acc
.
v
=
vec_add
(
visc_term
.
v
,
sph_term
.
v
)
;
acc_2
.
v
=
vec_add
(
visc_term_2
.
v
,
sph_term_2
.
v
)
;
/* Use the force, Luke! */
piax
.
v
=
mj
.
v
*
dx
.
v
*
acc
.
v
;
piax_2
.
v
=
mj_2
.
v
*
dx_2
.
v
*
acc_2
.
v
;
piay
.
v
=
mj
.
v
*
dy
.
v
*
acc
.
v
;
piay_2
.
v
=
mj_2
.
v
*
dy_2
.
v
*
acc_2
.
v
;
piaz
.
v
=
mj
.
v
*
dz
.
v
*
acc
.
v
;
piaz_2
.
v
=
mj_2
.
v
*
dz_2
.
v
*
acc_2
.
v
;
piax
.
v
=
vec_mul
(
mj
.
v
,
vec_mul
(
dx
.
v
,
acc
.
v
));
piax_2
.
v
=
vec_mul
(
mj_2
.
v
,
vec_mul
(
dx_2
.
v
,
acc_2
.
v
));
piay
.
v
=
vec_mul
(
mj
.
v
,
vec_mul
(
dy
.
v
,
acc
.
v
));
piay_2
.
v
=
vec_mul
(
mj_2
.
v
,
vec_mul
(
dy_2
.
v
,
acc_2
.
v
));
piaz
.
v
=
vec_mul
(
mj
.
v
,
vec_mul
(
dz
.
v
,
acc
.
v
));
piaz_2
.
v
=
vec_mul
(
mj_2
.
v
,
vec_mul
(
dz_2
.
v
,
acc_2
.
v
));
// for(int i=0; i<VEC_SIZE; i++) {
// message("mj: %f",mj.f[i]);
// message("dvdr: %f",dvdr.f[i]);
// message("ri: %f",ri.f[i]);
// message("pjrho: %f",pjrho.f[i]);
// message("wi_dr: %f",wi_dr.f[i]);
// message("wi_dx: %f",wi_dx.f[i]);
// message("hid_inv: %f",hid_inv.f[i]);
// }
/* Get the time derivative for h. */
pih_dt
.
v
=
mj
.
v
*
dvdr
.
v
*
ri
.
v
/
pjrho
.
v
*
wi_dr
.
v
;
pih_dt_2
.
v
=
mj_2
.
v
*
dvdr_2
.
v
*
ri_2
.
v
/
pjrho_2
.
v
*
wi_dr
_2
.
v
;
pih_dt
.
v
=
vec_div
(
vec_mul
(
mj
.
v
,
vec_mul
(
dvdr
.
v
,
vec_mul
(
ri
.
v
,
wi_dr
.
v
))),
pjrho
.
v
)
;
pih_dt_2
.
v
=
vec_div
(
vec_mul
(
mj_2
.
v
,
vec_mul
(
dvdr_2
.
v
,
vec_mul
(
ri_2
.
v
,
wi_dr_2
.
v
))),
pjrho
_2
.
v
)
;
/* Change in entropy */
entropy_dt
.
v
=
mj
.
v
*
visc_term
.
v
*
dvdr
.
v
;
entropy_dt_2
.
v
=
mj_2
.
v
*
visc_term_2
.
v
*
dvdr_2
.
v
;
entropy_dt
.
v
=
vec_mul
(
mj
.
v
,
vec_mul
(
visc_term
.
v
,
dvdr
.
v
))
;
entropy_dt_2
.
v
=
vec_mul
(
mj_2
.
v
,
vec_mul
(
visc_term_2
.
v
,
dvdr_2
.
v
))
;
/* Store the forces back on the particles. */
if
(
mask_cond
)
{
...
...
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment