From 02b12046982a73bf8c4ce4f80219a949ec8f5c6f Mon Sep 17 00:00:00 2001 From: James Willis <james.s.willis@durham.ac.uk> Date: Fri, 18 Aug 2017 12:58:06 +0100 Subject: [PATCH] Use intrinsics in arithmetic operations to support AVX-512. --- src/hydro/Gadget2/hydro_iact.h | 197 +++++++++++++++++---------------- 1 file changed, 104 insertions(+), 93 deletions(-) diff --git a/src/hydro/Gadget2/hydro_iact.h b/src/hydro/Gadget2/hydro_iact.h index 81b6381f27..4492334e72 100644 --- a/src/hydro/Gadget2/hydro_iact.h +++ b/src/hydro/Gadget2/hydro_iact.h @@ -1171,7 +1171,7 @@ __attribute__((always_inline)) INLINE static void runner_iact_nonsym_vec_force( #ifdef WITH_VECTORIZATION __attribute__((always_inline)) INLINE static void runner_iact_nonsym_1_vec_force( - float *R2, float *Dx, float *Dy, float *Dz, vector vix, vector viy, + vector *r2, vector *dx, vector *dy, vector *dz, vector vix, vector viy, vector viz, vector pirho, vector grad_hi, vector piPOrho2, vector balsara_i, vector ci, float *Vjx, float *Vjy, float *Vjz, float *Pjrho, float *Grad_hj, float *PjPOrho2, float *Balsara_j, float *Cj, @@ -1181,8 +1181,7 @@ runner_iact_nonsym_1_vec_force( #ifdef WITH_VECTORIZATION - vector r, r2, ri; - vector dx, dy, dz; + vector r, ri; vector vjx, vjy, vjz; vector pjrho, grad_hj, pjPOrho2, balsara_j, cj, mj, hj_inv; vector xi, xj; @@ -1195,11 +1194,6 @@ runner_iact_nonsym_1_vec_force( vector rho_ij, visc, visc_term, sph_term, acc, entropy_dt; /* Fill vectors. */ - r2.v = vec_load(R2); - dx.v = vec_load(Dx); - dy.v = vec_load(Dy); - dz.v = vec_load(Dz); - vjx.v = vec_load(Vjx); vjy.v = vec_load(Vjy); vjz.v = vec_load(Vjz); @@ -1218,8 +1212,8 @@ runner_iact_nonsym_1_vec_force( balsara.v = balsara_i.v + balsara_j.v; /* Get the radius and inverse radius. */ - ri = vec_reciprocal_sqrt(r2); - r.v = r2.v * ri.v; + ri = vec_reciprocal_sqrt(*r2); + r.v = r2->v * ri.v; /* Get the kernel for hi. */ hid_inv = pow_dimension_plus_one_vec(hi_inv); @@ -1237,8 +1231,8 @@ runner_iact_nonsym_1_vec_force( wj_dr.v = hjd_inv.v * wj_dx.v; /* Compute dv dot r. */ - dvdr.v = ((vix.v - vjx.v) * dx.v) + ((viy.v - vjy.v) * dy.v) + - ((viz.v - vjz.v) * dz.v); + dvdr.v = ((vix.v - vjx.v) * dx->v) + ((viy.v - vjy.v) * dy->v) + + ((viz.v - vjz.v) * dz->v); /* Compute the relative velocity. (This is 0 if the particles move away from * each other and negative otherwise) */ @@ -1263,9 +1257,9 @@ runner_iact_nonsym_1_vec_force( acc.v = visc_term.v + sph_term.v; /* Use the force, Luke! */ - piax.v = mj.v * dx.v * acc.v; - piay.v = mj.v * dy.v * acc.v; - piaz.v = mj.v * dz.v * acc.v; + piax.v = mj.v * dx->v * acc.v; + piay.v = mj.v * dy->v * acc.v; + piaz.v = mj.v * dz->v * acc.v; /* Get the time derivative for h. */ pih_dt.v = mj.v * dvdr.v * ri.v / pjrho.v * wi_dr.v; @@ -1304,10 +1298,10 @@ runner_iact_nonsym_2_vec_force( #ifdef WITH_VECTORIZATION vector r, r2, ri; - vector dx, dy, dz; + vector dx, dy, dz, dvx, dvy, dvz; vector vjx, vjy, vjz; vector pjrho, grad_hj, pjPOrho2, balsara_j, cj, mj, hj_inv; - vector xi, xj; + vector ui, uj; vector hid_inv, hjd_inv; vector wi_dx, wj_dx, wi_dr, wj_dr, dvdr; vector piax, piay, piaz; @@ -1317,10 +1311,10 @@ runner_iact_nonsym_2_vec_force( vector rho_ij, visc, visc_term, sph_term, acc, entropy_dt; vector r_2, r2_2, ri_2; - vector dx_2, dy_2, dz_2; + vector dx_2, dy_2, dz_2, dvx_2, dvy_2, dvz_2; vector vjx_2, vjy_2, vjz_2; vector pjrho_2, grad_hj_2, pjPOrho2_2, balsara_j_2, cj_2, mj_2, hj_inv_2; - vector xi_2, xj_2; + vector ui_2, uj_2; vector hjd_inv_2; vector wi_dx_2, wj_dx_2, wi_dr_2, wj_dr_2, dvdr_2; vector piax_2, piay_2, piaz_2; @@ -1330,128 +1324,145 @@ runner_iact_nonsym_2_vec_force( vector rho_ij_2, visc_2, visc_term_2, sph_term_2, acc_2, entropy_dt_2; /* Fill vectors. */ - r2.v = vec_load(R2); - dx.v = vec_load(Dx); - dy.v = vec_load(Dy); - dz.v = vec_load(Dz); - + mj.v = vec_load(Mj); + mj_2.v = vec_load(&Mj[VEC_SIZE]); vjx.v = vec_load(Vjx); + vjx_2.v = vec_load(&Vjx[VEC_SIZE]); vjy.v = vec_load(Vjy); + vjy_2.v = vec_load(&Vjy[VEC_SIZE]); vjz.v = vec_load(Vjz); - mj.v = vec_load(Mj); - - pjrho.v = vec_load(Pjrho); - grad_hj.v = vec_load(Grad_hj); - pjPOrho2.v = vec_load(PjPOrho2); - balsara_j.v = vec_load(Balsara_j); - cj.v = vec_load(Cj); - hj_inv.v = vec_load(Hj_inv); - - fac_mu.v = vec_set1(1.f); /* Will change with cosmological integration */ - - r2_2.v = vec_load(&R2[VEC_SIZE]); + vjz_2.v = vec_load(&Vjz[VEC_SIZE]); + dx.v = vec_load(Dx); dx_2.v = vec_load(&Dx[VEC_SIZE]); + dy.v = vec_load(Dy); dy_2.v = vec_load(&Dy[VEC_SIZE]); + dz.v = vec_load(Dz); dz_2.v = vec_load(&Dz[VEC_SIZE]); - vjx_2.v = vec_load(&Vjx[VEC_SIZE]); - vjy_2.v = vec_load(&Vjy[VEC_SIZE]); - vjz_2.v = vec_load(&Vjz[VEC_SIZE]); - mj_2.v = vec_load(&Mj[VEC_SIZE]); + /* Get the radius and inverse radius. */ + r2.v = vec_load(R2); + r2_2.v = vec_load(&R2[VEC_SIZE]); + ri = vec_reciprocal_sqrt(r2); + ri_2 = vec_reciprocal_sqrt(r2_2); + r.v = vec_mul(r2.v, ri.v); + r_2.v = vec_mul(r2_2.v, ri_2.v); + /* Get remaining properties. */ + pjrho.v = vec_load(Pjrho); pjrho_2.v = vec_load(&Pjrho[VEC_SIZE]); + grad_hj.v = vec_load(Grad_hj); grad_hj_2.v = vec_load(&Grad_hj[VEC_SIZE]); + pjPOrho2.v = vec_load(PjPOrho2); pjPOrho2_2.v = vec_load(&PjPOrho2[VEC_SIZE]); + balsara_j.v = vec_load(Balsara_j); balsara_j_2.v = vec_load(&Balsara_j[VEC_SIZE]); + cj.v = vec_load(Cj); cj_2.v = vec_load(&Cj[VEC_SIZE]); + hj_inv.v = vec_load(Hj_inv); hj_inv_2.v = vec_load(&Hj_inv[VEC_SIZE]); - /* Load stuff. */ - balsara.v = balsara_i.v + balsara_j.v; - balsara_2.v = balsara_i.v + balsara_j_2.v; + fac_mu.v = vec_set1(1.f); /* Will change with cosmological integration */ - /* Get the radius and inverse radius. */ - ri = vec_reciprocal_sqrt(r2); - ri_2 = vec_reciprocal_sqrt(r2_2); - r.v = r2.v * ri.v; - r_2.v = r2_2.v * ri_2.v; + /* Find the balsara switch. */ + balsara.v = vec_add(balsara_i.v, balsara_j.v); + balsara_2.v = vec_add(balsara_i.v, balsara_j_2.v); /* Get the kernel for hi. */ hid_inv = pow_dimension_plus_one_vec(hi_inv); - xi.v = r.v * hi_inv.v; - xi_2.v = r_2.v * hi_inv.v; - kernel_eval_dWdx_force_vec(&xi, &wi_dx); - kernel_eval_dWdx_force_vec(&xi_2, &wi_dx_2); - wi_dr.v = hid_inv.v * wi_dx.v; - wi_dr_2.v = hid_inv.v * wi_dx_2.v; + ui.v = vec_mul(r.v, hi_inv.v); + ui_2.v = vec_mul(r_2.v, hi_inv.v); + kernel_eval_dWdx_force_vec(&ui, &wi_dx); + kernel_eval_dWdx_force_vec(&ui_2, &wi_dx_2); + wi_dr.v = vec_mul(hid_inv.v, wi_dx.v); + wi_dr_2.v = vec_mul(hid_inv.v, wi_dx_2.v); /* Get the kernel for hj. */ hjd_inv = pow_dimension_plus_one_vec(hj_inv); hjd_inv_2 = pow_dimension_plus_one_vec(hj_inv_2); - xj.v = r.v * hj_inv.v; - xj_2.v = r_2.v * hj_inv_2.v; + uj.v = vec_mul(r.v, hj_inv.v); + uj_2.v = vec_mul(r_2.v, hj_inv_2.v); /* Calculate the kernel for two particles. */ - kernel_eval_dWdx_force_vec(&xj, &wj_dx); - kernel_eval_dWdx_force_vec(&xj_2, &wj_dx_2); + kernel_eval_dWdx_force_vec(&uj, &wj_dx); + kernel_eval_dWdx_force_vec(&uj_2, &wj_dx_2); - wj_dr.v = hjd_inv.v * wj_dx.v; - wj_dr_2.v = hjd_inv_2.v * wj_dx_2.v; + wj_dr.v = vec_mul(hjd_inv.v, wj_dx.v); + wj_dr_2.v = vec_mul(hjd_inv_2.v, wj_dx_2.v); + /* Compute dv. */ + dvx.v = vec_sub(vix.v, vjx.v); + dvx_2.v = vec_sub(vix.v, vjx_2.v); + dvy.v = vec_sub(viy.v, vjy.v); + dvy_2.v = vec_sub(viy.v, vjy_2.v); + dvz.v = vec_sub(viz.v, vjz.v); + dvz_2.v = vec_sub(viz.v, vjz_2.v); + /* Compute dv dot r. */ - dvdr.v = ((vix.v - vjx.v) * dx.v) + ((viy.v - vjy.v) * dy.v) + - ((viz.v - vjz.v) * dz.v); - dvdr_2.v = ((vix.v - vjx_2.v) * dx_2.v) + ((viy.v - vjy_2.v) * dy_2.v) + - ((viz.v - vjz_2.v) * dz_2.v); + dvdr.v = vec_fma(dvx.v, dx.v, vec_fma(dvy.v, dy.v, vec_mul(dvz.v, dz.v))); + dvdr_2.v = + vec_fma(dvx_2.v, dx_2.v, vec_fma(dvy_2.v, dy_2.v, vec_mul(dvz_2.v, dz_2.v))); /* Compute the relative velocity. (This is 0 if the particles move away from * each other and negative otherwise) */ omega_ij.v = vec_fmin(dvdr.v, vec_setzero()); omega_ij_2.v = vec_fmin(dvdr_2.v, vec_setzero()); - mu_ij.v = fac_mu.v * ri.v * omega_ij.v; /* This is 0 or negative */ - mu_ij_2.v = fac_mu.v * ri_2.v * omega_ij_2.v; /* This is 0 or negative */ + mu_ij.v = vec_mul(fac_mu.v, vec_mul(ri.v, omega_ij.v)); /* This is 0 or negative */ + mu_ij_2.v = vec_mul(fac_mu.v, vec_mul(ri_2.v, omega_ij_2.v)); /* This is 0 or negative */ /* Compute signal velocity */ - v_sig.v = ci.v + cj.v - vec_set1(3.0f) * mu_ij.v; - v_sig_2.v = ci.v + cj_2.v - vec_set1(3.0f) * mu_ij_2.v; + v_sig.v = vec_fnma(vec_set1(3.f), mu_ij.v, vec_add(ci.v, cj.v)); + v_sig_2.v = vec_fnma(vec_set1(3.f), mu_ij_2.v, vec_add(ci.v, cj_2.v)); /* Now construct the full viscosity term */ - rho_ij.v = vec_set1(0.5f) * (pirho.v + pjrho.v); - rho_ij_2.v = vec_set1(0.5f) * (pirho.v + pjrho_2.v); - visc.v = vec_set1(-0.25f) * vec_set1(const_viscosity_alpha) * v_sig.v * - mu_ij.v * balsara.v / rho_ij.v; - visc_2.v = vec_set1(-0.25f) * vec_set1(const_viscosity_alpha) * v_sig_2.v * - mu_ij_2.v * balsara_2.v / rho_ij_2.v; + rho_ij.v = vec_mul(vec_set1(0.5f), vec_add(pirho.v, pjrho.v)); + rho_ij_2.v = vec_mul(vec_set1(0.5f), vec_add(pirho.v, pjrho_2.v)); + + vector const_viscosity_alpha_fac; + const_viscosity_alpha_fac.v = vec_set1(-0.25f * const_viscosity_alpha); + + visc.v = vec_div(vec_mul(const_viscosity_alpha_fac.v, vec_mul(v_sig.v, vec_mul(mu_ij.v, balsara.v))), rho_ij.v); + visc_2.v = vec_div(vec_mul(const_viscosity_alpha_fac.v, vec_mul(v_sig_2.v, vec_mul(mu_ij_2.v, balsara_2.v))), rho_ij_2.v); /* Now, convolve with the kernel */ - visc_term.v = vec_set1(0.5f) * visc.v * (wi_dr.v + wj_dr.v) * ri.v; - visc_term_2.v = vec_set1(0.5f) * visc_2.v * (wi_dr_2.v + wj_dr_2.v) * ri_2.v; + visc_term.v = vec_mul(vec_set1(0.5f), vec_mul(visc.v, vec_mul(vec_add(wi_dr.v, wj_dr.v), ri.v))); + visc_term_2.v = vec_mul(vec_set1(0.5f), vec_mul(visc_2.v, vec_mul(vec_add(wi_dr_2.v, wj_dr_2.v), ri_2.v))); + + vector grad_hi_mul_piPOrho2; + grad_hi_mul_piPOrho2.v = vec_mul(grad_hi.v, piPOrho2.v); + sph_term.v = - (grad_hi.v * piPOrho2.v * wi_dr.v + grad_hj.v * pjPOrho2.v * wj_dr.v) * - ri.v; - sph_term_2.v = (grad_hi.v * piPOrho2.v * wi_dr_2.v + - grad_hj_2.v * pjPOrho2_2.v * wj_dr_2.v) * - ri_2.v; + vec_mul(vec_fma(grad_hi_mul_piPOrho2.v, wi_dr.v, vec_mul(grad_hj.v, vec_mul(pjPOrho2.v, wj_dr.v))), ri.v); + sph_term_2.v = vec_mul(vec_fma(grad_hi_mul_piPOrho2.v, wi_dr_2.v, vec_mul(grad_hj_2.v, vec_mul(pjPOrho2_2.v, wj_dr_2.v))), ri_2.v); /* Eventually get the acceleration */ - acc.v = visc_term.v + sph_term.v; - acc_2.v = visc_term_2.v + sph_term_2.v; + acc.v = vec_add(visc_term.v, sph_term.v); + acc_2.v = vec_add(visc_term_2.v, sph_term_2.v); /* Use the force, Luke! */ - piax.v = mj.v * dx.v * acc.v; - piax_2.v = mj_2.v * dx_2.v * acc_2.v; - piay.v = mj.v * dy.v * acc.v; - piay_2.v = mj_2.v * dy_2.v * acc_2.v; - piaz.v = mj.v * dz.v * acc.v; - piaz_2.v = mj_2.v * dz_2.v * acc_2.v; + piax.v = vec_mul(mj.v, vec_mul(dx.v, acc.v)); + piax_2.v = vec_mul(mj_2.v, vec_mul(dx_2.v, acc_2.v)); + piay.v = vec_mul(mj.v, vec_mul(dy.v, acc.v)); + piay_2.v = vec_mul(mj_2.v, vec_mul(dy_2.v, acc_2.v)); + piaz.v = vec_mul(mj.v, vec_mul(dz.v, acc.v)); + piaz_2.v = vec_mul(mj_2.v, vec_mul(dz_2.v, acc_2.v)); + +// for(int i=0; i<VEC_SIZE; i++) { +// message("mj: %f",mj.f[i]); +// message("dvdr: %f",dvdr.f[i]); +// message("ri: %f",ri.f[i]); +// message("pjrho: %f",pjrho.f[i]); +// message("wi_dr: %f",wi_dr.f[i]); +// message("wi_dx: %f",wi_dx.f[i]); +// message("hid_inv: %f",hid_inv.f[i]); +// } /* Get the time derivative for h. */ - pih_dt.v = mj.v * dvdr.v * ri.v / pjrho.v * wi_dr.v; - pih_dt_2.v = mj_2.v * dvdr_2.v * ri_2.v / pjrho_2.v * wi_dr_2.v; + pih_dt.v = vec_div(vec_mul(mj.v, vec_mul(dvdr.v, vec_mul(ri.v, wi_dr.v))), pjrho.v); + pih_dt_2.v = vec_div(vec_mul(mj_2.v, vec_mul(dvdr_2.v, vec_mul(ri_2.v, wi_dr_2.v))), pjrho_2.v); /* Change in entropy */ - entropy_dt.v = mj.v * visc_term.v * dvdr.v; - entropy_dt_2.v = mj_2.v * visc_term_2.v * dvdr_2.v; + entropy_dt.v = vec_mul(mj.v, vec_mul(visc_term.v, dvdr.v)); + entropy_dt_2.v = vec_mul(mj_2.v, vec_mul(visc_term_2.v, dvdr_2.v)); /* Store the forces back on the particles. */ if (mask_cond) { -- GitLab