Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
Q
QuickSched
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Deploy
Releases
Model registry
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
SWIFT
QuickSched
Commits
da3a3b86
Commit
da3a3b86
authored
10 years ago
by
Matthieu Schaller
Browse files
Options
Downloads
Patches
Plain Diff
Added equations for the recursive constrution of the multipoles.
parent
f55069e8
Branches
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
examples/theory/multipoles.tex
+39
-13
39 additions, 13 deletions
examples/theory/multipoles.tex
with
39 additions
and
13 deletions
examples/theory/multipoles.tex
+
39
−
13
View file @
da3a3b86
...
@@ -19,7 +19,7 @@
...
@@ -19,7 +19,7 @@
Bold quantities are vectors. The indices
$
\alpha
,
\beta
$
run over the directions
$
x,y,z
$
.
Bold quantities are vectors. The indices
$
\alpha
,
\beta
$
run over the directions
$
x,y,z
$
.
\section
{
Construction of multi
-
poles
}
\section
{
Construction of multipoles
}
For a set of particles
$
A
$
at position
$
\p
{
i
}
=(
x
_
i, y
_
i, z
_
i
)
$
with mass
$
m
_
i
$
,
For a set of particles
$
A
$
at position
$
\p
{
i
}
=(
x
_
i, y
_
i, z
_
i
)
$
with mass
$
m
_
i
$
,
we can construct the total mass of the set
we can construct the total mass of the set
...
@@ -30,8 +30,8 @@ $M_A$ and its centre of mass $\muu_A=(\mu_{A,x}, \mu_{A,y}, \mu_{A,z})$:
...
@@ -30,8 +30,8 @@ $M_A$ and its centre of mass $\muu_A=(\mu_{A,x}, \mu_{A,y}, \mu_{A,z})$:
m
_
i
\p
{
i
}
.
m
_
i
\p
{
i
}
.
\end{equation}
\end{equation}
T
he multi
-
poles can
then
be computed around the
centre of mass
$
\muu
_
A
$
. We use
For a set of particles
$
A
$
, t
he multipoles can be computed around the
Dehnen's notation.
centre of mass
$
\muu
_
A
$
. The first LHS term uses
Dehnen's notation.
\\
Monopole:
Monopole:
\begin{equation}
\begin{equation}
...
@@ -40,24 +40,50 @@ M_{(0,0,0)} = M_A
...
@@ -40,24 +40,50 @@ M_{(0,0,0)} = M_A
Dipole:
Dipole:
\begin{eqnarray}
\begin{eqnarray}
M
_{
(1,0,0)
}
&
=
&
0
\\
M
_{
(1,0,0)
}
&
=
&
P
_{
A,x
}
~=
0
\\
M
_{
(0,1,0)
}
&
=
&
0
\\
M
_{
(0,1,0)
}
&
=
&
P
_{
A,y
}
~=
0
\\
M
_{
(0,0,1)
}
&
=
&
0
M
_{
(0,0,1)
}
&
=
&
P
_{
A,z
}
~=
0
\end{eqnarray}
\end{eqnarray}
Quadrupole:
Quadrupole:
\begin{eqnarray}
\begin{eqnarray}
M
_{
(2,0,0)
}
&
=
&
I
_{
xx
}
~=
\sum
_{
i
\in
A
}
m
_
i ( p
_{
i,x
}
-
\mu
_{
A,x
}
)
^
2
\\
M
_{
(2,0,0)
}
&
=
&
I
_{
A,
xx
}
~=
\sum
_{
i
\in
A
}
m
_
i ( p
_{
i,x
}
-
\mu
_{
A,x
}
)
^
2
\\
M
_{
(0,2,0)
}
&
=
&
I
_{
yy
}
~=
\sum
_{
i
\in
A
}
m
_
i ( p
_{
i,y
}
-
\mu
_{
A,y
}
)
^
2
\\
M
_{
(0,2,0)
}
&
=
&
I
_{
A,
yy
}
~=
\sum
_{
i
\in
A
}
m
_
i ( p
_{
i,y
}
-
\mu
_{
A,y
}
)
^
2
\\
M
_{
(0,0,2)
}
&
=
&
I
_{
zz
}
~=
\sum
_{
i
\in
A
}
m
_
i ( p
_{
i,z
}
-
\mu
_{
A,z
}
)
^
2
\\
M
_{
(0,0,2)
}
&
=
&
I
_{
A,
zz
}
~=
\sum
_{
i
\in
A
}
m
_
i ( p
_{
i,z
}
-
\mu
_{
A,z
}
)
^
2
\\
M
_{
(1,1,0)
}
&
=
&
I
_{
xy
}
~=
\sum
_{
i
\in
A
}
m
_
i ( p
_{
i,x
}
-
\mu
_{
A,x
}
)(
M
_{
(1,1,0)
}
&
=
&
I
_{
A,
xy
}
~=
\sum
_{
i
\in
A
}
m
_
i ( p
_{
i,x
}
-
\mu
_{
A,x
}
)(
p
_{
i,y
}
-
\mu
_{
A,y
}
)
\\
p
_{
i,y
}
-
\mu
_{
A,y
}
)
\\
M
_{
(0,1,1)
}
&
=
&
I
_{
yz
}
~=
\sum
_{
i
\in
A
}
m
_
i ( p
_{
i,y
}
-
\mu
_{
A,y
}
)(
M
_{
(0,1,1)
}
&
=
&
I
_{
A,
yz
}
~=
\sum
_{
i
\in
A
}
m
_
i ( p
_{
i,y
}
-
\mu
_{
A,y
}
)(
p
_{
i,z
}
-
\mu
_{
A,z
}
)
\\
p
_{
i,z
}
-
\mu
_{
A,z
}
)
\\
M
_{
(1,0,1)
}
&
=
&
I
_{
xz
}
~=
\sum
_{
i
\in
A
}
m
_
i ( p
_{
i,x
}
-
\mu
_{
A,x
}
)(
M
_{
(1,0,1)
}
&
=
&
I
_{
A,
xz
}
~=
\sum
_{
i
\in
A
}
m
_
i ( p
_{
i,x
}
-
\mu
_{
A,x
}
)(
p
_{
i,z
}
-
\mu
_{
A,z
}
p
_{
i,z
}
-
\mu
_{
A,z
}
)
\end{eqnarray}
\end{eqnarray}
\section
{
Recursive construction of the quadrupoles
}
\section
{
Recursive construction of the quadrupoles
}
Given a set of multipoles
$
B
$
expressed around their centre of masses
$
\muu
_{
B
}$
, we can construct the total multipoles around the centre of mass
$
\muu
_{
A
}$
of the system consisting of all the particles contained in each
individual (disjoint) sub-sets
$
B
$
. This allows to construct the multipoles in
the tree recursively.
\\
Monopole:
\begin{equation}
M
_{
A
}
=
\sum
_{
B
\in
A
}
M
_
B
\end{equation}
Dipole:
\begin{equation}
P
_{
A,
\alpha
}
= 0
\end{equation}
Quadrupole:
\begin{equation}
I
_{
A,
\alpha\beta
}
=
\sum
_{
B
\in
A
}
\left
( I
_{
B,
\alpha\beta
}
+
M
_
B
\mu
_{
B,
\alpha
}
\mu
_{
B,
\beta
}
\right
) -
\frac
{
1
}{
M
_
A
}
\mu
_{
A,
\alpha
}
\mu
_{
A,
\beta
}
\end{equation}
\section
{
Derivatives of the potential
}
\end{document}
\end{document}
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment