Skip to content
Snippets Groups Projects
Commit da3a3b86 authored by Matthieu Schaller's avatar Matthieu Schaller
Browse files

Added equations for the recursive constrution of the multipoles.

parent f55069e8
Branches
No related tags found
No related merge requests found
...@@ -19,7 +19,7 @@ ...@@ -19,7 +19,7 @@
Bold quantities are vectors. The indices $\alpha,\beta$ run over the directions $x,y,z$. Bold quantities are vectors. The indices $\alpha,\beta$ run over the directions $x,y,z$.
\section{Construction of multi-poles} \section{Construction of multipoles}
For a set of particles $A$ at position $\p{i}=(x_i, y_i, z_i)$ with mass $m_i$, For a set of particles $A$ at position $\p{i}=(x_i, y_i, z_i)$ with mass $m_i$,
we can construct the total mass of the set we can construct the total mass of the set
...@@ -30,8 +30,8 @@ $M_A$ and its centre of mass $\muu_A=(\mu_{A,x}, \mu_{A,y}, \mu_{A,z})$: ...@@ -30,8 +30,8 @@ $M_A$ and its centre of mass $\muu_A=(\mu_{A,x}, \mu_{A,y}, \mu_{A,z})$:
m_i\p{i}. m_i\p{i}.
\end{equation} \end{equation}
The multi-poles can then be computed around the centre of mass $\muu_A$. We use For a set of particles $A$, the multipoles can be computed around the
Dehnen's notation. centre of mass $\muu_A$. The first LHS term uses Dehnen's notation.\\
Monopole: Monopole:
\begin{equation} \begin{equation}
...@@ -40,24 +40,50 @@ M_{(0,0,0)} = M_A ...@@ -40,24 +40,50 @@ M_{(0,0,0)} = M_A
Dipole: Dipole:
\begin{eqnarray} \begin{eqnarray}
M_{(1,0,0)} &=& 0\\ M_{(1,0,0)} &=& P_{A,x}~= 0\\
M_{(0,1,0)} &=& 0\\ M_{(0,1,0)} &=& P_{A,y}~=0\\
M_{(0,0,1)} &=& 0 M_{(0,0,1)} &=& P_{A,z}~=0
\end{eqnarray} \end{eqnarray}
Quadrupole: Quadrupole:
\begin{eqnarray} \begin{eqnarray}
M_{(2,0,0)} &=& I_{xx}~= \sum_{i\in A}m_i ( p_{i,x}-\mu_{A,x})^2\\ M_{(2,0,0)} &=& I_{A,xx}~= \sum_{i\in A}m_i ( p_{i,x}-\mu_{A,x})^2\\
M_{(0,2,0)} &=& I_{yy}~= \sum_{i\in A}m_i ( p_{i,y}-\mu_{A,y})^2\\ M_{(0,2,0)} &=& I_{A,yy}~= \sum_{i\in A}m_i ( p_{i,y}-\mu_{A,y})^2\\
M_{(0,0,2)} &=& I_{zz}~= \sum_{i\in A}m_i ( p_{i,z}-\mu_{A,z})^2\\ M_{(0,0,2)} &=& I_{A,zz}~= \sum_{i\in A}m_i ( p_{i,z}-\mu_{A,z})^2\\
M_{(1,1,0)} &=& I_{xy}~= \sum_{i\in A}m_i ( p_{i,x}-\mu_{A,x})( M_{(1,1,0)} &=& I_{A,xy}~= \sum_{i\in A}m_i ( p_{i,x}-\mu_{A,x})(
p_{i,y}-\mu_{A,y})\\ p_{i,y}-\mu_{A,y})\\
M_{(0,1,1)} &=& I_{yz}~= \sum_{i\in A}m_i ( p_{i,y}-\mu_{A,y})( M_{(0,1,1)} &=& I_{A,yz}~= \sum_{i\in A}m_i ( p_{i,y}-\mu_{A,y})(
p_{i,z}-\mu_{A,z})\\ p_{i,z}-\mu_{A,z})\\
M_{(1,0,1)} &=& I_{xz}~= \sum_{i\in A}m_i ( p_{i,x}-\mu_{A,x})( M_{(1,0,1)} &=& I_{A,xz}~= \sum_{i\in A}m_i ( p_{i,x}-\mu_{A,x})(
p_{i,z}-\mu_{A,z} p_{i,z}-\mu_{A,z})
\end{eqnarray} \end{eqnarray}
\section{Recursive construction of the quadrupoles} \section{Recursive construction of the quadrupoles}
Given a set of multipoles $B$ expressed around their centre of masses
$\muu_{B}$, we can construct the total multipoles around the centre of mass
$\muu_{A}$ of the system consisting of all the particles contained in each
individual (disjoint) sub-sets $B$. This allows to construct the multipoles in
the tree recursively.\\
Monopole:
\begin{equation}
M_{A} = \sum_{B\in A} M_B
\end{equation}
Dipole:
\begin{equation}
P_{A,\alpha} = 0
\end{equation}
Quadrupole:
\begin{equation}
I_{A,\alpha\beta} = \sum_{B\in A}\left( I_{B,\alpha\beta} +
M_B\mu_{B,\alpha}\mu_{B,\beta} \right) - \frac{1}{M_A}
\mu_{A,\alpha}\mu_{A,\beta}
\end{equation}
\section{Derivatives of the potential}
\end{document} \end{document}
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment