Skip to content
Snippets Groups Projects
Commit f55069e8 authored by Matthieu Schaller's avatar Matthieu Schaller
Browse files

Explicit version of the FMM equations. First part: multipoles.

parent 8b7fb103
No related branches found
No related tags found
No related merge requests found
......@@ -10,7 +10,8 @@
\newcommand{\acc}{\mathbf{a}}
\newcommand{\muu}{\boldsymbol{\mu}}
\title{Multipole expansion}
\title{FMM and B-H equations up to quadrupole terms}
\author{Matthieu Schaller}
\begin{document}
......@@ -18,228 +19,45 @@
Bold quantities are vectors. The indices $\alpha,\beta$ run over the directions $x,y,z$.
For a set of particles at position $\p{i}=(x_i, y_i, z_i)$ with mass $m_i$, we can construct the total mass of the set
$M$ and its centre of mass $\muu=(\mu_x, \mu_y, \mu_z)$:
\section{Construction of multi-poles}
\begin{equation}
M = \sum_{i=1}^N m_i, \qquad \muu = \frac{1}{M} \sum_{i=1}^N m_i\p{i}.
\end{equation}
For each particle, we can define $r_i= \sqrt{(x_i-\mu_x)^2 + (y_i-\mu_y)^2 + (z_i-\mu_z)^2}$, the distance to the
centre of mass.\\
The quadrupole moment $\overline{\overline{Q}}$ of this mass distribution is then written as
\begin{eqnarray}
Q_{xx} &=& \sum_i m_i \left( 3(x_i-\mu_x)^2 - r_i^2\right) \\
Q_{xy} &=& \sum_i m_i 3(x_i-\mu_x)(y_i-\mu_y) \\
Q_{xz} &=& \sum_i m_i 3(x_i-\mu_x)(z_i-\mu_z) \\
~& & \nonumber\\
Q_{yx} &=& \sum_i m_i 3(y_i-\mu_y)(x_i-\mu_x) \\
Q_{yy} &=& \sum_i m_i \left( 3(y_i-\mu_y)^2 - r_i^2\right) \\
Q_{yz} &=& \sum_i m_i 3(y_i-\mu_y)(z_i-\mu_z) \\
~& &\nonumber\\
Q_{zx} &=& \sum_i m_i 3(z_i-\mu_z)(x_i-\mu_x) \\
Q_{zy} &=& \sum_i m_i 3(z_i-\mu_z)(y_i-\mu_y) \\
Q_{zz} &=& \sum_i m_i \left( 3(z_i-\mu_z)^2 - r_i^2\right)
\end{eqnarray}
Note that this matrix is symmetric and traceless ($Q_{xx}+Q_{yy}+Q_{zz}=0$), so only $5$ components need to be
computed. \\
\pagebreak
The potential created by this distribution of mass on a point at position $\rr=(r_x,r_y,r_z)$ from the centre of mass
$\muu$ is then:
For a set of particles $A$ at position $\p{i}=(x_i, y_i, z_i)$ with mass $m_i$,
we can construct the total mass of the set
$M_A$ and its centre of mass $\muu_A=(\mu_{A,x}, \mu_{A,y}, \mu_{A,z})$:
\begin{equation}
\phi(\rr) = -\frac{G}{|\rr|}M + \frac{1}{2}\frac{G}{|\rr|^5}\sum_{\alpha,\beta} r_\alpha r_\beta Q_{\alpha\beta}
M_A = \sum_{i\in A} m_i, \qquad \muu_A = \frac{1}{M_A} \sum_{i \in A}
m_i\p{i}.
\end{equation}
Taking the gradient of this expression to get the acceleration, we obtain:
The multi-poles can then be computed around the centre of mass $\muu_A$. We use
Dehnen's notation.
Monopole:
\begin{equation}
-\nabla_\gamma\phi(\rr)= -\frac{GM}{|\rr|^3} r_\gamma +
\frac{1}{2}G\sum_{\alpha,\beta}\left(\frac{\delta_{\alpha\gamma}r_\beta}{|\rr|^5} +
\frac{\delta_{\gamma\beta}r_\alpha}{|\rr|^5} -5\frac{r_\alpha r_\beta r_\gamma}{|\rr|^7}\right)Q_{\alpha\beta}
M_{(0,0,0)} = M_A
\end{equation}
Writing this explicitly for each coordinate (using the symmetry of $\overline{\overline{Q}}$), we get:
Dipole:
\begin{eqnarray}
a_x &=& -\frac{Gr_x}{|\rr|^3}M + \frac{1}{2} \frac{G}{|\rr|^5}\left[2r_x Q_{xx} + 2r_yQ_{xy} + 2r_z Q_{xz}\right] -
\frac{5}{2} \frac{G r_x}{|\rr|^7} \Xi, \\
a_y &=& -\frac{Gr_y}{|\rr|^3}M + \frac{1}{2} \frac{G}{|\rr|^5}\left[2r_x Q_{yx} + 2r_yQ_{yy} + 2r_z Q_{yz}\right] -
\frac{5}{2} \frac{G r_y}{|\rr|^7} \Xi, \\
a_z &=& -\frac{Gr_z}{|\rr|^3}M + \frac{1}{2} \frac{G}{|\rr|^5}\left[2r_x Q_{zx} + 2r_yQ_{zy} + 2r_z Q_{zz}\right] -
\frac{5}{2} \frac{G r_z}{|\rr|^7} \Xi, \\
M_{(1,0,0)} &=& 0\\
M_{(0,1,0)} &=& 0\\
M_{(0,0,1)} &=& 0
\end{eqnarray}
with the common coefficient $\Xi$ defined as:
\begin{equation*}
\Xi = \rr\cdot(\overline{\overline{Q}}\cdot \rr) = r_x^2Q_{xx} + r_y^2Q_{yy} + r_z^2Q_{zz} + 2r_xr_yQ_{xy} +
2r_xr_zQ_{xz} + 2r_yr_zQ_{yz}
\end{equation*}
Quadrupole:
\begin{eqnarray}
M_{(2,0,0)} &=& I_{xx}~= \sum_{i\in A}m_i ( p_{i,x}-\mu_{A,x})^2\\
M_{(0,2,0)} &=& I_{yy}~= \sum_{i\in A}m_i ( p_{i,y}-\mu_{A,y})^2\\
M_{(0,0,2)} &=& I_{zz}~= \sum_{i\in A}m_i ( p_{i,z}-\mu_{A,z})^2\\
M_{(1,1,0)} &=& I_{xy}~= \sum_{i\in A}m_i ( p_{i,x}-\mu_{A,x})(
p_{i,y}-\mu_{A,y})\\
M_{(0,1,1)} &=& I_{yz}~= \sum_{i\in A}m_i ( p_{i,y}-\mu_{A,y})(
p_{i,z}-\mu_{A,z})\\
M_{(1,0,1)} &=& I_{xz}~= \sum_{i\in A}m_i ( p_{i,x}-\mu_{A,x})(
p_{i,z}-\mu_{A,z}
\end{eqnarray}
%
% Let's consider the gravitational acceleration $\acc=(a_x,a_y,a_z)$ that a set of point masses at position
% $\p{i}=(p_{i,x}, p_{i,y}, p_{i,z})$ with masses $m_i$ generate at position $\rr=(r_x, r_y, r_z)$:
%
% \begin{equation}
% \acc(\rr) = \sum_i \frac{Gm_i}{|\rr - \p{i}|^3}(\rr - \p{i})
% \end{equation}
%
% This expression can split in one expression for each of the three spatial coordinates $u=x,y,z$:
%
% \begin{equation}
% a_u (\rr) = \sum_i \frac{m_i G}{|\rr-\p{i}|^3} ( r_u - p_{i,u}) = \sum_i m_i f_u(\rr - \p{i}),
% \end{equation}
%
% with
%
% \begin{equation}
% f_u (\vv) = \frac{G}{|\vv|^3} v_u.
% \end{equation}
%
% We define two quantities to simplify the notations: the total mass $M$ of the set of point masses and the centre of
% mass $\muu=(\mu_x, \mu_y, \mu_z)$ of this set:
%
% \begin{equation}
% M = \sum_{i=1}^N m_i, \qquad \muu = \frac{1}{M} \sum_{i=1}^N m_i\p{i}.
% \end{equation}
%
%
% We can now expand the functions $f_u$ around the vector linking the particle to the centre of mass $\rr-\muu$:
%
% \begin{eqnarray}
% a_u(\rr) &\approx& \sum_i m_i f_u(\rr - \muu) \\
% & & + \sum_i m_i (\p{i}-\muu) \cdot \nabla f_u(\rr - \muu)\\
% & & + \frac{1}{2}\sum_i m_i (\p{i}-\muu)\cdot \nabla^2 f_u(\rr-\muu)\cdot (\p{i} - \muu).
% \end{eqnarray}
%
% The first order term is identically zero and can hence be dropped. Re-arranging some of the terms, introducing the
% vector $\dd=\rr-\muu=(d_x,d_y,d_z)$ and using the fact that the Hessian matrix of $f_u$ is symmetric, we get:
% \begin{eqnarray}
% a_u(\rr) &=& Mf_u(\dd) \\
% & & + \frac{1}{2} \sum_i m_i \p{i}\cdot \nabla^2f_u(\dd)\cdot \p{i} \\
% & & + \frac{1}{2} M \muu\cdot \nabla^2f_u(\dd)\cdot \muu \\
% & & - \sum_i m_i \p{i}\cdot \nabla^2f_u(\dd)\cdot \muu \\
% &=& Mf_u(\dd) \\
% & & + \frac{1}{2} \sum_i m_i \p{i}\cdot \nabla^2f_u(\dd)\cdot \p{i} \\
% & &- \frac{1}{2} M \muu\cdot \nabla^2f_u(\dd)\cdot \muu
% \end{eqnarray}
%
% The gradient of $f_u$ reads
% \begin{equation}
% \nabla f_u(\dd) = \frac{-3Gd_u}{|\dd|^5}\dd + \frac{G}{|\dd|^3}\hat{\mathbf{e}}_u,
% \end{equation}
%
% with $\hat{\mathbf{e}}_u$ a unit vector along the $u$-axis. The different components of the Hessian matrix then read:
%
% \begin{eqnarray}
% \nabla^2f_u(\dd)_{uu} &=& \frac{15Gd_u^3}{|\dd|^7} - \frac{9Gd_u}{|\dd|^5} \\
% \nabla^2f_u(\dd)_{uv} &=& \frac{15Gd_u^2d_v}{|\dd|^7} - \frac{3Gd_v}{|\dd|^5}\\
% \nabla^2f_u(\dd)_{vv} &=& \frac{15Gd_u^2d_v}{|\dd|^7} - \frac{3Gd_u}{|\dd|^5} \\
% \nabla^2f_u(\dd)_{vw} &=& \frac{15Gd_ud_vd_w}{|\dd|^7}
% \end{eqnarray}
%
% Keeping only the $xx$ term of the Hessian matrix in the Taylor expansion and introducing $\sigma_{xx}^2 =
% \sum_im_ip_{i,x}^2$, we get for the accelerations:
%
% \begin{equation}
% a_u(\rr) = Mf_u(\rr-\muu) + \frac{1}{2}(\sigma_{xx}^2 - M\mu_x^2)\nabla^2f_u(\dd)_{vv},
% \end{equation}
%
% with both $v=u$ or $v\neq u$. Expanding this coordinate by coordinate, we get:
%
% \begin{eqnarray}
% a_x(\rr) &=& M\frac{G}{|\dd|^3} d_x + \frac{1}{2}\left(\sigma_{xx}^2 - M\mu_x^2\right)\left(\frac{15Gd_x^3}{|\dd|^7} -
% \frac{9Gd_x}{|\dd|^5}\right)\\
% a_y(\rr) &=& M\frac{G}{|\dd|^3} d_y + \frac{1}{2}\left(\sigma_{xx}^2 -
% M\mu_x^2\right)\left(\frac{15Gd_xd_y^2}{|\dd|^7}-
% \frac{3Gd_x}{|\dd|^5}\right) \\
% a_z(\rr) &=& M\frac{G}{|\dd|^3} d_z + \frac{1}{2}\left(\sigma_{xx}^2 -
% M\mu_x^2\right)\left(\frac{15Gd_xd_z^2}{|\dd|^7}-
% \frac{3Gd_x}{|\dd|^5}\right)
% \end{eqnarray}
%
% The quantities $M$, $\muu$ and $\sigma_{xx}^2$ can be constructed on-the-fly by adding particles to the previous total.
%-------------------------------------------------------------------------------------------------
\section{Recursive construction of the quadrupoles}
% \begin{equation}
% \phi(\rr) = - \sum_{i=1}^N \frac{Gm_i}{|\rr - \p{i}|} = - \sum_{i=1}^N m_i f(\rr - \p{i}),
% \end{equation}
%
% with the function $f(\rr)=G/|\rr|$. The gradient and Hessian matrix of $f$ read:
%
% \begin{equation}
% \nabla f(\rr) = \frac{G}{|\rr|^3}\rr, \quad \nabla^2 f(\rr) = G\left(
% \begin{array}{ccc}
% \frac{3r_x^2}{|\rr|^5} - \frac{1}{|\rr|^3} & \frac{3r_xr_y}{|\rr|^5} & \frac{3r_xr_z}{|\rr|^5} \\
% \frac{3r_yr_x}{|\rr|^5} & \frac{3r_y^2}{|\rr|^5} - \frac{1}{|\rr|^3} & \frac{3r_yr_z}{|\rr|^5} \\
% \frac{3r_zr_x}{|\rr|^5} &\frac{3r_zr_y}{|\rr|^5}&\frac{3r_z^2}{|\rr|^5} - \frac{1}{|\rr|^3} \\
% \end{array}
% \right)
% \end{equation}
%
%
%
% We define two quantities to simplify the notations: the total mass $M$ of the set of point masses and the centre of
% mass $\muu=(\mu_x, \mu_y, \mu_z)$ of this set:
%
% \begin{equation}
% M = \sum_{i=1}^N m_i, \qquad \muu = \frac{1}{M} \sum_{i=1}^N m_i\p{i}
% \end{equation}
%
% Expanding the potential around $\muu$, we find
%
% \begin{equation}
% \phi(\rr) \approx -\sum_{i=1}^N m_i f(\rr - \muu) - \sum_{i=1}^N \frac{m_i}{2} (\p{i} - \muu) \cdot \nabla^2
% f(\rr - \muu) \cdot (\p{i} - \muu)
% \end{equation}
%
% Note that the first order term, the ``dipole'', is identically zero and not shown here. Re-arranging the terms, we
% get:
%
% \begin{equation}
% \phi(\rr) \approx -Mf(\rr - \muu) - \frac{1}{2}\sum_{i=1}^N m_i \p{i}\cdot \nabla^2
% f(\rr - \muu) \cdot \p{i} + \frac{M}{2} \muu\cdot \nabla^2
% f(\rr - \muu) \cdot \muu \nonumber
% \end{equation}
%
%
% Let's now assume that on average $|x_{i,x} - \mu_x| \gg |x_{i,y} - \mu_y| \approx |x_{i,z} - \mu_z|$, then the only
% term in the matrix that needs to be computed is $\nabla^2 f(\rr-\muu)_{xx}$. The expression then reduces to
%
% \begin{equation}
% \phi(\rr) \approx -Mf(\rr - \muu) - \frac{1}{2}\sum_{i=1}^N m_i x_{i,x}^2 \nabla^2f(\rr - \muu)_{xx} +
% \frac{M}{2} \mu_x^2 \nabla^2f(\rr - \muu)_{xx}
% \end{equation}
%
% We can introduce the quantity $d=\sum_{i=1}^N m_i x_{i,x}^2$ to simplify the expression even more:
%
% \begin{equation}
% \phi(\rr) \approx -Mf(\rr - \muu) - \left(\frac{d}{2} - \frac{M\mu_x^2}{2}\right) \nabla^2f(\rr - \muu)_{xx}
% \end{equation}
%
% Using the definition of $f$, we get:
%
% \begin{equation}
% \phi(\rr) \approx -\frac{GM}{|\rr - \muu|} - G\left(\frac{d}{2} - \frac{M\mu_x^2}{2}\right) \left(
% \frac{3(r_x-\mu_x)^2}{|\rr-\muu|^5} - \frac{1}{|\rr-\muu|^3}\right).
% \end{equation}
%
% The acceleration created by the set of particles on a test particle at position $\rr$ is then
%
% \begin{eqnarray}
% \mathbf{a}(\rr)&=& -\nabla\phi(\rr) \nonumber \\
% &\approx& - \frac{GM}{|\rr - \muu|^3}(\rr-\muu) \nonumber \\
% & &- G\left(\frac{d}{2} - \frac{M\mu_x^2}{2}\right)\left(\frac{15(r_x-\mu_x)^2}{|\rr-\muu|^7} -
% \frac{1}{|\rr-\muu|^5}\right) (\rr -\muu) \nonumber \\
% & & + G\left(\frac{d}{2} - \frac{M\mu_x^2}{2}\right) \frac{6(r_x-\mu_x)^2}{|\rr-\muu|^7} \mathbf{e}_x,
% \end{eqnarray}
%
% where $\mathbf{e}_x$ is a unit vector along the x-axis. The quantities $M$, $\muu$ and $d$ can be constructed
% on-the-fly by adding particles to the previous total.
\end{document}
\documentclass[a4paper,10pt]{article}
\usepackage[utf8]{inputenc}
\usepackage{amsmath}
\usepackage{amssymb}
\newcommand{\rr}{\mathbf{r}}
\newcommand{\dd}{\mathbf{d}}
\newcommand{\vv}{\mathbf{v}}
\newcommand{\p}[1]{\mathbf{p}_#1}
\newcommand{\acc}{\mathbf{a}}
\newcommand{\muu}{\boldsymbol{\mu}}
\title{Multipole expansion}
\begin{document}
\maketitle
Bold quantities are vectors. The indices $\alpha,\beta$ run over the directions $x,y,z$.
For a set of particles at position $\p{i}=(x_i, y_i, z_i)$ with mass $m_i$, we can construct the total mass of the set
$M$ and its centre of mass $\muu=(\mu_x, \mu_y, \mu_z)$:
\begin{equation}
M = \sum_{i=1}^N m_i, \qquad \muu = \frac{1}{M} \sum_{i=1}^N m_i\p{i}.
\end{equation}
For each particle, we can define $r_i= \sqrt{(x_i-\mu_x)^2 + (y_i-\mu_y)^2 + (z_i-\mu_z)^2}$, the distance to the
centre of mass.\\
The quadrupole moment $\overline{\overline{Q}}$ of this mass distribution is then written as
\begin{eqnarray}
Q_{xx} &=& \sum_i m_i \left( 3(x_i-\mu_x)^2 - r_i^2\right) \\
Q_{xy} &=& \sum_i m_i 3(x_i-\mu_x)(y_i-\mu_y) \\
Q_{xz} &=& \sum_i m_i 3(x_i-\mu_x)(z_i-\mu_z) \\
~& & \nonumber\\
Q_{yx} &=& \sum_i m_i 3(y_i-\mu_y)(x_i-\mu_x) \\
Q_{yy} &=& \sum_i m_i \left( 3(y_i-\mu_y)^2 - r_i^2\right) \\
Q_{yz} &=& \sum_i m_i 3(y_i-\mu_y)(z_i-\mu_z) \\
~& &\nonumber\\
Q_{zx} &=& \sum_i m_i 3(z_i-\mu_z)(x_i-\mu_x) \\
Q_{zy} &=& \sum_i m_i 3(z_i-\mu_z)(y_i-\mu_y) \\
Q_{zz} &=& \sum_i m_i \left( 3(z_i-\mu_z)^2 - r_i^2\right)
\end{eqnarray}
Note that this matrix is symmetric and traceless ($Q_{xx}+Q_{yy}+Q_{zz}=0$), so only $5$ components need to be
computed. \\
\pagebreak
The potential created by this distribution of mass on a point at position $\rr=(r_x,r_y,r_z)$ from the centre of mass
$\muu$ is then:
\begin{equation}
\phi(\rr) = -\frac{G}{|\rr|}M + \frac{1}{2}\frac{G}{|\rr|^5}\sum_{\alpha,\beta} r_\alpha r_\beta Q_{\alpha\beta}
\end{equation}
Taking the gradient of this expression to get the acceleration, we obtain:
\begin{equation}
-\nabla_\gamma\phi(\rr)= -\frac{GM}{|\rr|^3} r_\gamma +
\frac{1}{2}G\sum_{\alpha,\beta}\left(\frac{\delta_{\alpha\gamma}r_\beta}{|\rr|^5} +
\frac{\delta_{\gamma\beta}r_\alpha}{|\rr|^5} -5\frac{r_\alpha r_\beta r_\gamma}{|\rr|^7}\right)Q_{\alpha\beta}
\end{equation}
Writing this explicitly for each coordinate (using the symmetry of $\overline{\overline{Q}}$), we get:
\begin{eqnarray}
a_x &=& -\frac{Gr_x}{|\rr|^3}M + \frac{1}{2} \frac{G}{|\rr|^5}\left[2r_x Q_{xx} + 2r_yQ_{xy} + 2r_z Q_{xz}\right] -
\frac{5}{2} \frac{G r_x}{|\rr|^7} \Xi, \\
a_y &=& -\frac{Gr_y}{|\rr|^3}M + \frac{1}{2} \frac{G}{|\rr|^5}\left[2r_x Q_{yx} + 2r_yQ_{yy} + 2r_z Q_{yz}\right] -
\frac{5}{2} \frac{G r_y}{|\rr|^7} \Xi, \\
a_z &=& -\frac{Gr_z}{|\rr|^3}M + \frac{1}{2} \frac{G}{|\rr|^5}\left[2r_x Q_{zx} + 2r_yQ_{zy} + 2r_z Q_{zz}\right] -
\frac{5}{2} \frac{G r_z}{|\rr|^7} \Xi, \\
\end{eqnarray}
with the common coefficient $\Xi$ defined as:
\begin{equation*}
\Xi = \rr\cdot(\overline{\overline{Q}}\cdot \rr) = r_x^2Q_{xx} + r_y^2Q_{yy} + r_z^2Q_{zz} + 2r_xr_yQ_{xy} +
2r_xr_zQ_{xz} + 2r_yr_zQ_{yz}
\end{equation*}
%
% Let's consider the gravitational acceleration $\acc=(a_x,a_y,a_z)$ that a set of point masses at position
% $\p{i}=(p_{i,x}, p_{i,y}, p_{i,z})$ with masses $m_i$ generate at position $\rr=(r_x, r_y, r_z)$:
%
% \begin{equation}
% \acc(\rr) = \sum_i \frac{Gm_i}{|\rr - \p{i}|^3}(\rr - \p{i})
% \end{equation}
%
% This expression can split in one expression for each of the three spatial coordinates $u=x,y,z$:
%
% \begin{equation}
% a_u (\rr) = \sum_i \frac{m_i G}{|\rr-\p{i}|^3} ( r_u - p_{i,u}) = \sum_i m_i f_u(\rr - \p{i}),
% \end{equation}
%
% with
%
% \begin{equation}
% f_u (\vv) = \frac{G}{|\vv|^3} v_u.
% \end{equation}
%
% We define two quantities to simplify the notations: the total mass $M$ of the set of point masses and the centre of
% mass $\muu=(\mu_x, \mu_y, \mu_z)$ of this set:
%
% \begin{equation}
% M = \sum_{i=1}^N m_i, \qquad \muu = \frac{1}{M} \sum_{i=1}^N m_i\p{i}.
% \end{equation}
%
%
% We can now expand the functions $f_u$ around the vector linking the particle to the centre of mass $\rr-\muu$:
%
% \begin{eqnarray}
% a_u(\rr) &\approx& \sum_i m_i f_u(\rr - \muu) \\
% & & + \sum_i m_i (\p{i}-\muu) \cdot \nabla f_u(\rr - \muu)\\
% & & + \frac{1}{2}\sum_i m_i (\p{i}-\muu)\cdot \nabla^2 f_u(\rr-\muu)\cdot (\p{i} - \muu).
% \end{eqnarray}
%
% The first order term is identically zero and can hence be dropped. Re-arranging some of the terms, introducing the
% vector $\dd=\rr-\muu=(d_x,d_y,d_z)$ and using the fact that the Hessian matrix of $f_u$ is symmetric, we get:
% \begin{eqnarray}
% a_u(\rr) &=& Mf_u(\dd) \\
% & & + \frac{1}{2} \sum_i m_i \p{i}\cdot \nabla^2f_u(\dd)\cdot \p{i} \\
% & & + \frac{1}{2} M \muu\cdot \nabla^2f_u(\dd)\cdot \muu \\
% & & - \sum_i m_i \p{i}\cdot \nabla^2f_u(\dd)\cdot \muu \\
% &=& Mf_u(\dd) \\
% & & + \frac{1}{2} \sum_i m_i \p{i}\cdot \nabla^2f_u(\dd)\cdot \p{i} \\
% & &- \frac{1}{2} M \muu\cdot \nabla^2f_u(\dd)\cdot \muu
% \end{eqnarray}
%
% The gradient of $f_u$ reads
% \begin{equation}
% \nabla f_u(\dd) = \frac{-3Gd_u}{|\dd|^5}\dd + \frac{G}{|\dd|^3}\hat{\mathbf{e}}_u,
% \end{equation}
%
% with $\hat{\mathbf{e}}_u$ a unit vector along the $u$-axis. The different components of the Hessian matrix then read:
%
% \begin{eqnarray}
% \nabla^2f_u(\dd)_{uu} &=& \frac{15Gd_u^3}{|\dd|^7} - \frac{9Gd_u}{|\dd|^5} \\
% \nabla^2f_u(\dd)_{uv} &=& \frac{15Gd_u^2d_v}{|\dd|^7} - \frac{3Gd_v}{|\dd|^5}\\
% \nabla^2f_u(\dd)_{vv} &=& \frac{15Gd_u^2d_v}{|\dd|^7} - \frac{3Gd_u}{|\dd|^5} \\
% \nabla^2f_u(\dd)_{vw} &=& \frac{15Gd_ud_vd_w}{|\dd|^7}
% \end{eqnarray}
%
% Keeping only the $xx$ term of the Hessian matrix in the Taylor expansion and introducing $\sigma_{xx}^2 =
% \sum_im_ip_{i,x}^2$, we get for the accelerations:
%
% \begin{equation}
% a_u(\rr) = Mf_u(\rr-\muu) + \frac{1}{2}(\sigma_{xx}^2 - M\mu_x^2)\nabla^2f_u(\dd)_{vv},
% \end{equation}
%
% with both $v=u$ or $v\neq u$. Expanding this coordinate by coordinate, we get:
%
% \begin{eqnarray}
% a_x(\rr) &=& M\frac{G}{|\dd|^3} d_x + \frac{1}{2}\left(\sigma_{xx}^2 - M\mu_x^2\right)\left(\frac{15Gd_x^3}{|\dd|^7} -
% \frac{9Gd_x}{|\dd|^5}\right)\\
% a_y(\rr) &=& M\frac{G}{|\dd|^3} d_y + \frac{1}{2}\left(\sigma_{xx}^2 -
% M\mu_x^2\right)\left(\frac{15Gd_xd_y^2}{|\dd|^7}-
% \frac{3Gd_x}{|\dd|^5}\right) \\
% a_z(\rr) &=& M\frac{G}{|\dd|^3} d_z + \frac{1}{2}\left(\sigma_{xx}^2 -
% M\mu_x^2\right)\left(\frac{15Gd_xd_z^2}{|\dd|^7}-
% \frac{3Gd_x}{|\dd|^5}\right)
% \end{eqnarray}
%
% The quantities $M$, $\muu$ and $\sigma_{xx}^2$ can be constructed on-the-fly by adding particles to the previous total.
%-------------------------------------------------------------------------------------------------
% \begin{equation}
% \phi(\rr) = - \sum_{i=1}^N \frac{Gm_i}{|\rr - \p{i}|} = - \sum_{i=1}^N m_i f(\rr - \p{i}),
% \end{equation}
%
% with the function $f(\rr)=G/|\rr|$. The gradient and Hessian matrix of $f$ read:
%
% \begin{equation}
% \nabla f(\rr) = \frac{G}{|\rr|^3}\rr, \quad \nabla^2 f(\rr) = G\left(
% \begin{array}{ccc}
% \frac{3r_x^2}{|\rr|^5} - \frac{1}{|\rr|^3} & \frac{3r_xr_y}{|\rr|^5} & \frac{3r_xr_z}{|\rr|^5} \\
% \frac{3r_yr_x}{|\rr|^5} & \frac{3r_y^2}{|\rr|^5} - \frac{1}{|\rr|^3} & \frac{3r_yr_z}{|\rr|^5} \\
% \frac{3r_zr_x}{|\rr|^5} &\frac{3r_zr_y}{|\rr|^5}&\frac{3r_z^2}{|\rr|^5} - \frac{1}{|\rr|^3} \\
% \end{array}
% \right)
% \end{equation}
%
%
%
% We define two quantities to simplify the notations: the total mass $M$ of the set of point masses and the centre of
% mass $\muu=(\mu_x, \mu_y, \mu_z)$ of this set:
%
% \begin{equation}
% M = \sum_{i=1}^N m_i, \qquad \muu = \frac{1}{M} \sum_{i=1}^N m_i\p{i}
% \end{equation}
%
% Expanding the potential around $\muu$, we find
%
% \begin{equation}
% \phi(\rr) \approx -\sum_{i=1}^N m_i f(\rr - \muu) - \sum_{i=1}^N \frac{m_i}{2} (\p{i} - \muu) \cdot \nabla^2
% f(\rr - \muu) \cdot (\p{i} - \muu)
% \end{equation}
%
% Note that the first order term, the ``dipole'', is identically zero and not shown here. Re-arranging the terms, we
% get:
%
% \begin{equation}
% \phi(\rr) \approx -Mf(\rr - \muu) - \frac{1}{2}\sum_{i=1}^N m_i \p{i}\cdot \nabla^2
% f(\rr - \muu) \cdot \p{i} + \frac{M}{2} \muu\cdot \nabla^2
% f(\rr - \muu) \cdot \muu \nonumber
% \end{equation}
%
%
% Let's now assume that on average $|x_{i,x} - \mu_x| \gg |x_{i,y} - \mu_y| \approx |x_{i,z} - \mu_z|$, then the only
% term in the matrix that needs to be computed is $\nabla^2 f(\rr-\muu)_{xx}$. The expression then reduces to
%
% \begin{equation}
% \phi(\rr) \approx -Mf(\rr - \muu) - \frac{1}{2}\sum_{i=1}^N m_i x_{i,x}^2 \nabla^2f(\rr - \muu)_{xx} +
% \frac{M}{2} \mu_x^2 \nabla^2f(\rr - \muu)_{xx}
% \end{equation}
%
% We can introduce the quantity $d=\sum_{i=1}^N m_i x_{i,x}^2$ to simplify the expression even more:
%
% \begin{equation}
% \phi(\rr) \approx -Mf(\rr - \muu) - \left(\frac{d}{2} - \frac{M\mu_x^2}{2}\right) \nabla^2f(\rr - \muu)_{xx}
% \end{equation}
%
% Using the definition of $f$, we get:
%
% \begin{equation}
% \phi(\rr) \approx -\frac{GM}{|\rr - \muu|} - G\left(\frac{d}{2} - \frac{M\mu_x^2}{2}\right) \left(
% \frac{3(r_x-\mu_x)^2}{|\rr-\muu|^5} - \frac{1}{|\rr-\muu|^3}\right).
% \end{equation}
%
% The acceleration created by the set of particles on a test particle at position $\rr$ is then
%
% \begin{eqnarray}
% \mathbf{a}(\rr)&=& -\nabla\phi(\rr) \nonumber \\
% &\approx& - \frac{GM}{|\rr - \muu|^3}(\rr-\muu) \nonumber \\
% & &- G\left(\frac{d}{2} - \frac{M\mu_x^2}{2}\right)\left(\frac{15(r_x-\mu_x)^2}{|\rr-\muu|^7} -
% \frac{1}{|\rr-\muu|^5}\right) (\rr -\muu) \nonumber \\
% & & + G\left(\frac{d}{2} - \frac{M\mu_x^2}{2}\right) \frac{6(r_x-\mu_x)^2}{|\rr-\muu|^7} \mathbf{e}_x,
% \end{eqnarray}
%
% where $\mathbf{e}_x$ is a unit vector along the x-axis. The quantities $M$, $\muu$ and $d$ can be constructed
% on-the-fly by adding particles to the previous total.
\end{document}
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment