Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
Q
QuickSched
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Deploy
Releases
Model registry
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
SWIFT
QuickSched
Commits
f55069e8
Commit
f55069e8
authored
10 years ago
by
Matthieu Schaller
Browse files
Options
Downloads
Patches
Plain Diff
Explicit version of the FMM equations. First part: multipoles.
parent
8b7fb103
No related branches found
No related tags found
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
examples/theory/multipoles.tex
+29
-211
29 additions, 211 deletions
examples/theory/multipoles.tex
examples/theory/multipoles_old.tex
+245
-0
245 additions, 0 deletions
examples/theory/multipoles_old.tex
with
274 additions
and
211 deletions
examples/theory/multipoles.tex
+
29
−
211
View file @
f55069e8
...
...
@@ -10,7 +10,8 @@
\newcommand
{
\acc
}{
\mathbf
{
a
}}
\newcommand
{
\muu
}{
\boldsymbol
{
\mu
}}
\title
{
Multipole expansion
}
\title
{
FMM and B-H equations up to quadrupole terms
}
\author
{
Matthieu Schaller
}
\begin{document}
...
...
@@ -18,228 +19,45 @@
Bold quantities are vectors. The indices
$
\alpha
,
\beta
$
run over the directions
$
x,y,z
$
.
For a set of particles at position
$
\p
{
i
}
=(
x
_
i, y
_
i, z
_
i
)
$
with mass
$
m
_
i
$
, we can construct the total mass of the set
$
M
$
and its centre of mass
$
\muu
=(
\mu
_
x,
\mu
_
y,
\mu
_
z
)
$
:
\section
{
Construction of multi-poles
}
\begin{equation}
M =
\sum
_{
i=1
}^
N m
_
i,
\qquad
\muu
=
\frac
{
1
}{
M
}
\sum
_{
i=1
}^
N m
_
i
\p
{
i
}
.
\end{equation}
For each particle, we can define
$
r
_
i
=
\sqrt
{
(
x
_
i
-
\mu
_
x
)
^
2
+
(
y
_
i
-
\mu
_
y
)
^
2
+
(
z
_
i
-
\mu
_
z
)
^
2
}$
, the distance to the
centre of mass.
\\
The quadrupole moment
$
\overline
{
\overline
{
Q
}}$
of this mass distribution is then written as
\begin{eqnarray}
Q
_{
xx
}
&
=
&
\sum
_
i m
_
i
\left
( 3(x
_
i-
\mu
_
x)
^
2 - r
_
i
^
2
\right
)
\\
Q
_{
xy
}
&
=
&
\sum
_
i m
_
i 3(x
_
i-
\mu
_
x)(y
_
i-
\mu
_
y)
\\
Q
_{
xz
}
&
=
&
\sum
_
i m
_
i 3(x
_
i-
\mu
_
x)(z
_
i-
\mu
_
z)
\\
~
&
&
\nonumber\\
Q
_{
yx
}
&
=
&
\sum
_
i m
_
i 3(y
_
i-
\mu
_
y)(x
_
i-
\mu
_
x)
\\
Q
_{
yy
}
&
=
&
\sum
_
i m
_
i
\left
( 3(y
_
i-
\mu
_
y)
^
2 - r
_
i
^
2
\right
)
\\
Q
_{
yz
}
&
=
&
\sum
_
i m
_
i 3(y
_
i-
\mu
_
y)(z
_
i-
\mu
_
z)
\\
~
&
&
\nonumber\\
Q
_{
zx
}
&
=
&
\sum
_
i m
_
i 3(z
_
i-
\mu
_
z)(x
_
i-
\mu
_
x)
\\
Q
_{
zy
}
&
=
&
\sum
_
i m
_
i 3(z
_
i-
\mu
_
z)(y
_
i-
\mu
_
y)
\\
Q
_{
zz
}
&
=
&
\sum
_
i m
_
i
\left
( 3(z
_
i-
\mu
_
z)
^
2 - r
_
i
^
2
\right
)
\end{eqnarray}
Note that this matrix is symmetric and traceless (
$
Q
_{
xx
}
+
Q
_{
yy
}
+
Q
_{
zz
}
=
0
$
), so only
$
5
$
components need to be
computed.
\\
\pagebreak
The potential created by this distribution of mass on a point at position
$
\rr
=(
r
_
x,r
_
y,r
_
z
)
$
from the centre of mass
$
\muu
$
is then:
For a set of particles
$
A
$
at position
$
\p
{
i
}
=(
x
_
i, y
_
i, z
_
i
)
$
with mass
$
m
_
i
$
,
we can construct the total mass of the set
$
M
_
A
$
and its centre of mass
$
\muu
_
A
=(
\mu
_{
A,x
}
,
\mu
_{
A,y
}
,
\mu
_{
A,z
}
)
$
:
\begin{equation}
\phi
(
\rr
) = -
\frac
{
G
}{
|
\rr
|
}
M +
\frac
{
1
}{
2
}
\frac
{
G
}{
|
\rr
|
^
5
}
\sum
_{
\alpha
,
\beta
}
r
_
\alpha
r
_
\beta
Q
_{
\alpha\beta
}
M
_
A =
\sum
_{
i
\in
A
}
m
_
i,
\qquad
\muu
_
A =
\frac
{
1
}{
M
_
A
}
\sum
_{
i
\in
A
}
m
_
i
\p
{
i
}
.
\end{equation}
Taking the gradient of this expression to get the acceleration, we obtain:
The multi-poles can then be computed around the centre of mass
$
\muu
_
A
$
. We use
Dehnen's notation.
Monopole:
\begin{equation}
-
\nabla
_
\gamma\phi
(
\rr
)= -
\frac
{
GM
}{
|
\rr
|
^
3
}
r
_
\gamma
+
\frac
{
1
}{
2
}
G
\sum
_{
\alpha
,
\beta
}
\left
(
\frac
{
\delta
_{
\alpha\gamma
}
r
_
\beta
}{
|
\rr
|
^
5
}
+
\frac
{
\delta
_{
\gamma\beta
}
r
_
\alpha
}{
|
\rr
|
^
5
}
-5
\frac
{
r
_
\alpha
r
_
\beta
r
_
\gamma
}{
|
\rr
|
^
7
}
\right
)Q
_{
\alpha\beta
}
M
_{
(0,0,0)
}
= M
_
A
\end{equation}
Writing this explicitly for each coordinate (using the symmetry of
$
\overline
{
\overline
{
Q
}}$
), we get:
Dipole:
\begin{eqnarray}
a
_
x
&
=
&
-
\frac
{
Gr
_
x
}{
|
\rr
|
^
3
}
M +
\frac
{
1
}{
2
}
\frac
{
G
}{
|
\rr
|
^
5
}
\left
[2r_x Q_{xx} + 2r_yQ_{xy} + 2r_z Q_{xz}\right]
-
\frac
{
5
}{
2
}
\frac
{
G r
_
x
}{
|
\rr
|
^
7
}
\Xi
,
\\
a
_
y
&
=
&
-
\frac
{
Gr
_
y
}{
|
\rr
|
^
3
}
M +
\frac
{
1
}{
2
}
\frac
{
G
}{
|
\rr
|
^
5
}
\left
[2r_x Q_{yx} + 2r_yQ_{yy} + 2r_z Q_{yz}\right]
-
\frac
{
5
}{
2
}
\frac
{
G r
_
y
}{
|
\rr
|
^
7
}
\Xi
,
\\
a
_
z
&
=
&
-
\frac
{
Gr
_
z
}{
|
\rr
|
^
3
}
M +
\frac
{
1
}{
2
}
\frac
{
G
}{
|
\rr
|
^
5
}
\left
[2r_x Q_{zx} + 2r_yQ_{zy} + 2r_z Q_{zz}\right]
-
\frac
{
5
}{
2
}
\frac
{
G r
_
z
}{
|
\rr
|
^
7
}
\Xi
,
\\
M
_{
(1,0,0)
}
&
=
&
0
\\
M
_{
(0,1,0)
}
&
=
&
0
\\
M
_{
(0,0,1)
}
&
=
&
0
\end{eqnarray}
with the common coefficient
$
\Xi
$
defined as:
\begin{equation*}
\Xi
=
\rr\cdot
(
\overline
{
\overline
{
Q
}}
\cdot
\rr
) = r
_
x
^
2Q
_{
xx
}
+ r
_
y
^
2Q
_{
yy
}
+ r
_
z
^
2Q
_{
zz
}
+ 2r
_
xr
_
yQ
_{
xy
}
+
2r
_
xr
_
zQ
_{
xz
}
+ 2r
_
yr
_
zQ
_{
yz
}
\end{equation*}
Quadrupole:
\begin{eqnarray}
M
_{
(2,0,0)
}
&
=
&
I
_{
xx
}
~=
\sum
_{
i
\in
A
}
m
_
i ( p
_{
i,x
}
-
\mu
_{
A,x
}
)
^
2
\\
M
_{
(0,2,0)
}
&
=
&
I
_{
yy
}
~=
\sum
_{
i
\in
A
}
m
_
i ( p
_{
i,y
}
-
\mu
_{
A,y
}
)
^
2
\\
M
_{
(0,0,2)
}
&
=
&
I
_{
zz
}
~=
\sum
_{
i
\in
A
}
m
_
i ( p
_{
i,z
}
-
\mu
_{
A,z
}
)
^
2
\\
M
_{
(1,1,0)
}
&
=
&
I
_{
xy
}
~=
\sum
_{
i
\in
A
}
m
_
i ( p
_{
i,x
}
-
\mu
_{
A,x
}
)(
p
_{
i,y
}
-
\mu
_{
A,y
}
)
\\
M
_{
(0,1,1)
}
&
=
&
I
_{
yz
}
~=
\sum
_{
i
\in
A
}
m
_
i ( p
_{
i,y
}
-
\mu
_{
A,y
}
)(
p
_{
i,z
}
-
\mu
_{
A,z
}
)
\\
M
_{
(1,0,1)
}
&
=
&
I
_{
xz
}
~=
\sum
_{
i
\in
A
}
m
_
i ( p
_{
i,x
}
-
\mu
_{
A,x
}
)(
p
_{
i,z
}
-
\mu
_{
A,z
}
\end{eqnarray}
%
% Let's consider the gravitational acceleration $\acc=(a_x,a_y,a_z)$ that a set of point masses at position
% $\p{i}=(p_{i,x}, p_{i,y}, p_{i,z})$ with masses $m_i$ generate at position $\rr=(r_x, r_y, r_z)$:
%
% \begin{equation}
% \acc(\rr) = \sum_i \frac{Gm_i}{|\rr - \p{i}|^3}(\rr - \p{i})
% \end{equation}
%
% This expression can split in one expression for each of the three spatial coordinates $u=x,y,z$:
%
% \begin{equation}
% a_u (\rr) = \sum_i \frac{m_i G}{|\rr-\p{i}|^3} ( r_u - p_{i,u}) = \sum_i m_i f_u(\rr - \p{i}),
% \end{equation}
%
% with
%
% \begin{equation}
% f_u (\vv) = \frac{G}{|\vv|^3} v_u.
% \end{equation}
%
% We define two quantities to simplify the notations: the total mass $M$ of the set of point masses and the centre of
% mass $\muu=(\mu_x, \mu_y, \mu_z)$ of this set:
%
% \begin{equation}
% M = \sum_{i=1}^N m_i, \qquad \muu = \frac{1}{M} \sum_{i=1}^N m_i\p{i}.
% \end{equation}
%
%
% We can now expand the functions $f_u$ around the vector linking the particle to the centre of mass $\rr-\muu$:
%
% \begin{eqnarray}
% a_u(\rr) &\approx& \sum_i m_i f_u(\rr - \muu) \\
% & & + \sum_i m_i (\p{i}-\muu) \cdot \nabla f_u(\rr - \muu)\\
% & & + \frac{1}{2}\sum_i m_i (\p{i}-\muu)\cdot \nabla^2 f_u(\rr-\muu)\cdot (\p{i} - \muu).
% \end{eqnarray}
%
% The first order term is identically zero and can hence be dropped. Re-arranging some of the terms, introducing the
% vector $\dd=\rr-\muu=(d_x,d_y,d_z)$ and using the fact that the Hessian matrix of $f_u$ is symmetric, we get:
% \begin{eqnarray}
% a_u(\rr) &=& Mf_u(\dd) \\
% & & + \frac{1}{2} \sum_i m_i \p{i}\cdot \nabla^2f_u(\dd)\cdot \p{i} \\
% & & + \frac{1}{2} M \muu\cdot \nabla^2f_u(\dd)\cdot \muu \\
% & & - \sum_i m_i \p{i}\cdot \nabla^2f_u(\dd)\cdot \muu \\
% &=& Mf_u(\dd) \\
% & & + \frac{1}{2} \sum_i m_i \p{i}\cdot \nabla^2f_u(\dd)\cdot \p{i} \\
% & &- \frac{1}{2} M \muu\cdot \nabla^2f_u(\dd)\cdot \muu
% \end{eqnarray}
%
% The gradient of $f_u$ reads
% \begin{equation}
% \nabla f_u(\dd) = \frac{-3Gd_u}{|\dd|^5}\dd + \frac{G}{|\dd|^3}\hat{\mathbf{e}}_u,
% \end{equation}
%
% with $\hat{\mathbf{e}}_u$ a unit vector along the $u$-axis. The different components of the Hessian matrix then read:
%
% \begin{eqnarray}
% \nabla^2f_u(\dd)_{uu} &=& \frac{15Gd_u^3}{|\dd|^7} - \frac{9Gd_u}{|\dd|^5} \\
% \nabla^2f_u(\dd)_{uv} &=& \frac{15Gd_u^2d_v}{|\dd|^7} - \frac{3Gd_v}{|\dd|^5}\\
% \nabla^2f_u(\dd)_{vv} &=& \frac{15Gd_u^2d_v}{|\dd|^7} - \frac{3Gd_u}{|\dd|^5} \\
% \nabla^2f_u(\dd)_{vw} &=& \frac{15Gd_ud_vd_w}{|\dd|^7}
% \end{eqnarray}
%
% Keeping only the $xx$ term of the Hessian matrix in the Taylor expansion and introducing $\sigma_{xx}^2 =
% \sum_im_ip_{i,x}^2$, we get for the accelerations:
%
% \begin{equation}
% a_u(\rr) = Mf_u(\rr-\muu) + \frac{1}{2}(\sigma_{xx}^2 - M\mu_x^2)\nabla^2f_u(\dd)_{vv},
% \end{equation}
%
% with both $v=u$ or $v\neq u$. Expanding this coordinate by coordinate, we get:
%
% \begin{eqnarray}
% a_x(\rr) &=& M\frac{G}{|\dd|^3} d_x + \frac{1}{2}\left(\sigma_{xx}^2 - M\mu_x^2\right)\left(\frac{15Gd_x^3}{|\dd|^7} -
% \frac{9Gd_x}{|\dd|^5}\right)\\
% a_y(\rr) &=& M\frac{G}{|\dd|^3} d_y + \frac{1}{2}\left(\sigma_{xx}^2 -
% M\mu_x^2\right)\left(\frac{15Gd_xd_y^2}{|\dd|^7}-
% \frac{3Gd_x}{|\dd|^5}\right) \\
% a_z(\rr) &=& M\frac{G}{|\dd|^3} d_z + \frac{1}{2}\left(\sigma_{xx}^2 -
% M\mu_x^2\right)\left(\frac{15Gd_xd_z^2}{|\dd|^7}-
% \frac{3Gd_x}{|\dd|^5}\right)
% \end{eqnarray}
%
% The quantities $M$, $\muu$ and $\sigma_{xx}^2$ can be constructed on-the-fly by adding particles to the previous total.
%-------------------------------------------------------------------------------------------------
\section
{
Recursive construction of the quadrupoles
}
% \begin{equation}
% \phi(\rr) = - \sum_{i=1}^N \frac{Gm_i}{|\rr - \p{i}|} = - \sum_{i=1}^N m_i f(\rr - \p{i}),
% \end{equation}
%
% with the function $f(\rr)=G/|\rr|$. The gradient and Hessian matrix of $f$ read:
%
% \begin{equation}
% \nabla f(\rr) = \frac{G}{|\rr|^3}\rr, \quad \nabla^2 f(\rr) = G\left(
% \begin{array}{ccc}
% \frac{3r_x^2}{|\rr|^5} - \frac{1}{|\rr|^3} & \frac{3r_xr_y}{|\rr|^5} & \frac{3r_xr_z}{|\rr|^5} \\
% \frac{3r_yr_x}{|\rr|^5} & \frac{3r_y^2}{|\rr|^5} - \frac{1}{|\rr|^3} & \frac{3r_yr_z}{|\rr|^5} \\
% \frac{3r_zr_x}{|\rr|^5} &\frac{3r_zr_y}{|\rr|^5}&\frac{3r_z^2}{|\rr|^5} - \frac{1}{|\rr|^3} \\
% \end{array}
% \right)
% \end{equation}
%
%
%
% We define two quantities to simplify the notations: the total mass $M$ of the set of point masses and the centre of
% mass $\muu=(\mu_x, \mu_y, \mu_z)$ of this set:
%
% \begin{equation}
% M = \sum_{i=1}^N m_i, \qquad \muu = \frac{1}{M} \sum_{i=1}^N m_i\p{i}
% \end{equation}
%
% Expanding the potential around $\muu$, we find
%
% \begin{equation}
% \phi(\rr) \approx -\sum_{i=1}^N m_i f(\rr - \muu) - \sum_{i=1}^N \frac{m_i}{2} (\p{i} - \muu) \cdot \nabla^2
% f(\rr - \muu) \cdot (\p{i} - \muu)
% \end{equation}
%
% Note that the first order term, the ``dipole'', is identically zero and not shown here. Re-arranging the terms, we
% get:
%
% \begin{equation}
% \phi(\rr) \approx -Mf(\rr - \muu) - \frac{1}{2}\sum_{i=1}^N m_i \p{i}\cdot \nabla^2
% f(\rr - \muu) \cdot \p{i} + \frac{M}{2} \muu\cdot \nabla^2
% f(\rr - \muu) \cdot \muu \nonumber
% \end{equation}
%
%
% Let's now assume that on average $|x_{i,x} - \mu_x| \gg |x_{i,y} - \mu_y| \approx |x_{i,z} - \mu_z|$, then the only
% term in the matrix that needs to be computed is $\nabla^2 f(\rr-\muu)_{xx}$. The expression then reduces to
%
% \begin{equation}
% \phi(\rr) \approx -Mf(\rr - \muu) - \frac{1}{2}\sum_{i=1}^N m_i x_{i,x}^2 \nabla^2f(\rr - \muu)_{xx} +
% \frac{M}{2} \mu_x^2 \nabla^2f(\rr - \muu)_{xx}
% \end{equation}
%
% We can introduce the quantity $d=\sum_{i=1}^N m_i x_{i,x}^2$ to simplify the expression even more:
%
% \begin{equation}
% \phi(\rr) \approx -Mf(\rr - \muu) - \left(\frac{d}{2} - \frac{M\mu_x^2}{2}\right) \nabla^2f(\rr - \muu)_{xx}
% \end{equation}
%
% Using the definition of $f$, we get:
%
% \begin{equation}
% \phi(\rr) \approx -\frac{GM}{|\rr - \muu|} - G\left(\frac{d}{2} - \frac{M\mu_x^2}{2}\right) \left(
% \frac{3(r_x-\mu_x)^2}{|\rr-\muu|^5} - \frac{1}{|\rr-\muu|^3}\right).
% \end{equation}
%
% The acceleration created by the set of particles on a test particle at position $\rr$ is then
%
% \begin{eqnarray}
% \mathbf{a}(\rr)&=& -\nabla\phi(\rr) \nonumber \\
% &\approx& - \frac{GM}{|\rr - \muu|^3}(\rr-\muu) \nonumber \\
% & &- G\left(\frac{d}{2} - \frac{M\mu_x^2}{2}\right)\left(\frac{15(r_x-\mu_x)^2}{|\rr-\muu|^7} -
% \frac{1}{|\rr-\muu|^5}\right) (\rr -\muu) \nonumber \\
% & & + G\left(\frac{d}{2} - \frac{M\mu_x^2}{2}\right) \frac{6(r_x-\mu_x)^2}{|\rr-\muu|^7} \mathbf{e}_x,
% \end{eqnarray}
%
% where $\mathbf{e}_x$ is a unit vector along the x-axis. The quantities $M$, $\muu$ and $d$ can be constructed
% on-the-fly by adding particles to the previous total.
\end{document}
This diff is collapsed.
Click to expand it.
examples/theory/multipoles_old.tex
0 → 100644
+
245
−
0
View file @
f55069e8
\documentclass
[a4paper,10pt]
{
article
}
\usepackage
[utf8]
{
inputenc
}
\usepackage
{
amsmath
}
\usepackage
{
amssymb
}
\newcommand
{
\rr
}{
\mathbf
{
r
}}
\newcommand
{
\dd
}{
\mathbf
{
d
}}
\newcommand
{
\vv
}{
\mathbf
{
v
}}
\newcommand
{
\p
}
[1]
{
\mathbf
{
p
}_
#1
}
\newcommand
{
\acc
}{
\mathbf
{
a
}}
\newcommand
{
\muu
}{
\boldsymbol
{
\mu
}}
\title
{
Multipole expansion
}
\begin{document}
\maketitle
Bold quantities are vectors. The indices
$
\alpha
,
\beta
$
run over the directions
$
x,y,z
$
.
For a set of particles at position
$
\p
{
i
}
=(
x
_
i, y
_
i, z
_
i
)
$
with mass
$
m
_
i
$
, we can construct the total mass of the set
$
M
$
and its centre of mass
$
\muu
=(
\mu
_
x,
\mu
_
y,
\mu
_
z
)
$
:
\begin{equation}
M =
\sum
_{
i=1
}^
N m
_
i,
\qquad
\muu
=
\frac
{
1
}{
M
}
\sum
_{
i=1
}^
N m
_
i
\p
{
i
}
.
\end{equation}
For each particle, we can define
$
r
_
i
=
\sqrt
{
(
x
_
i
-
\mu
_
x
)
^
2
+
(
y
_
i
-
\mu
_
y
)
^
2
+
(
z
_
i
-
\mu
_
z
)
^
2
}$
, the distance to the
centre of mass.
\\
The quadrupole moment
$
\overline
{
\overline
{
Q
}}$
of this mass distribution is then written as
\begin{eqnarray}
Q
_{
xx
}
&
=
&
\sum
_
i m
_
i
\left
( 3(x
_
i-
\mu
_
x)
^
2 - r
_
i
^
2
\right
)
\\
Q
_{
xy
}
&
=
&
\sum
_
i m
_
i 3(x
_
i-
\mu
_
x)(y
_
i-
\mu
_
y)
\\
Q
_{
xz
}
&
=
&
\sum
_
i m
_
i 3(x
_
i-
\mu
_
x)(z
_
i-
\mu
_
z)
\\
~
&
&
\nonumber\\
Q
_{
yx
}
&
=
&
\sum
_
i m
_
i 3(y
_
i-
\mu
_
y)(x
_
i-
\mu
_
x)
\\
Q
_{
yy
}
&
=
&
\sum
_
i m
_
i
\left
( 3(y
_
i-
\mu
_
y)
^
2 - r
_
i
^
2
\right
)
\\
Q
_{
yz
}
&
=
&
\sum
_
i m
_
i 3(y
_
i-
\mu
_
y)(z
_
i-
\mu
_
z)
\\
~
&
&
\nonumber\\
Q
_{
zx
}
&
=
&
\sum
_
i m
_
i 3(z
_
i-
\mu
_
z)(x
_
i-
\mu
_
x)
\\
Q
_{
zy
}
&
=
&
\sum
_
i m
_
i 3(z
_
i-
\mu
_
z)(y
_
i-
\mu
_
y)
\\
Q
_{
zz
}
&
=
&
\sum
_
i m
_
i
\left
( 3(z
_
i-
\mu
_
z)
^
2 - r
_
i
^
2
\right
)
\end{eqnarray}
Note that this matrix is symmetric and traceless (
$
Q
_{
xx
}
+
Q
_{
yy
}
+
Q
_{
zz
}
=
0
$
), so only
$
5
$
components need to be
computed.
\\
\pagebreak
The potential created by this distribution of mass on a point at position
$
\rr
=(
r
_
x,r
_
y,r
_
z
)
$
from the centre of mass
$
\muu
$
is then:
\begin{equation}
\phi
(
\rr
) = -
\frac
{
G
}{
|
\rr
|
}
M +
\frac
{
1
}{
2
}
\frac
{
G
}{
|
\rr
|
^
5
}
\sum
_{
\alpha
,
\beta
}
r
_
\alpha
r
_
\beta
Q
_{
\alpha\beta
}
\end{equation}
Taking the gradient of this expression to get the acceleration, we obtain:
\begin{equation}
-
\nabla
_
\gamma\phi
(
\rr
)= -
\frac
{
GM
}{
|
\rr
|
^
3
}
r
_
\gamma
+
\frac
{
1
}{
2
}
G
\sum
_{
\alpha
,
\beta
}
\left
(
\frac
{
\delta
_{
\alpha\gamma
}
r
_
\beta
}{
|
\rr
|
^
5
}
+
\frac
{
\delta
_{
\gamma\beta
}
r
_
\alpha
}{
|
\rr
|
^
5
}
-5
\frac
{
r
_
\alpha
r
_
\beta
r
_
\gamma
}{
|
\rr
|
^
7
}
\right
)Q
_{
\alpha\beta
}
\end{equation}
Writing this explicitly for each coordinate (using the symmetry of
$
\overline
{
\overline
{
Q
}}$
), we get:
\begin{eqnarray}
a
_
x
&
=
&
-
\frac
{
Gr
_
x
}{
|
\rr
|
^
3
}
M +
\frac
{
1
}{
2
}
\frac
{
G
}{
|
\rr
|
^
5
}
\left
[2r_x Q_{xx} + 2r_yQ_{xy} + 2r_z Q_{xz}\right]
-
\frac
{
5
}{
2
}
\frac
{
G r
_
x
}{
|
\rr
|
^
7
}
\Xi
,
\\
a
_
y
&
=
&
-
\frac
{
Gr
_
y
}{
|
\rr
|
^
3
}
M +
\frac
{
1
}{
2
}
\frac
{
G
}{
|
\rr
|
^
5
}
\left
[2r_x Q_{yx} + 2r_yQ_{yy} + 2r_z Q_{yz}\right]
-
\frac
{
5
}{
2
}
\frac
{
G r
_
y
}{
|
\rr
|
^
7
}
\Xi
,
\\
a
_
z
&
=
&
-
\frac
{
Gr
_
z
}{
|
\rr
|
^
3
}
M +
\frac
{
1
}{
2
}
\frac
{
G
}{
|
\rr
|
^
5
}
\left
[2r_x Q_{zx} + 2r_yQ_{zy} + 2r_z Q_{zz}\right]
-
\frac
{
5
}{
2
}
\frac
{
G r
_
z
}{
|
\rr
|
^
7
}
\Xi
,
\\
\end{eqnarray}
with the common coefficient
$
\Xi
$
defined as:
\begin{equation*}
\Xi
=
\rr\cdot
(
\overline
{
\overline
{
Q
}}
\cdot
\rr
) = r
_
x
^
2Q
_{
xx
}
+ r
_
y
^
2Q
_{
yy
}
+ r
_
z
^
2Q
_{
zz
}
+ 2r
_
xr
_
yQ
_{
xy
}
+
2r
_
xr
_
zQ
_{
xz
}
+ 2r
_
yr
_
zQ
_{
yz
}
\end{equation*}
%
% Let's consider the gravitational acceleration $\acc=(a_x,a_y,a_z)$ that a set of point masses at position
% $\p{i}=(p_{i,x}, p_{i,y}, p_{i,z})$ with masses $m_i$ generate at position $\rr=(r_x, r_y, r_z)$:
%
% \begin{equation}
% \acc(\rr) = \sum_i \frac{Gm_i}{|\rr - \p{i}|^3}(\rr - \p{i})
% \end{equation}
%
% This expression can split in one expression for each of the three spatial coordinates $u=x,y,z$:
%
% \begin{equation}
% a_u (\rr) = \sum_i \frac{m_i G}{|\rr-\p{i}|^3} ( r_u - p_{i,u}) = \sum_i m_i f_u(\rr - \p{i}),
% \end{equation}
%
% with
%
% \begin{equation}
% f_u (\vv) = \frac{G}{|\vv|^3} v_u.
% \end{equation}
%
% We define two quantities to simplify the notations: the total mass $M$ of the set of point masses and the centre of
% mass $\muu=(\mu_x, \mu_y, \mu_z)$ of this set:
%
% \begin{equation}
% M = \sum_{i=1}^N m_i, \qquad \muu = \frac{1}{M} \sum_{i=1}^N m_i\p{i}.
% \end{equation}
%
%
% We can now expand the functions $f_u$ around the vector linking the particle to the centre of mass $\rr-\muu$:
%
% \begin{eqnarray}
% a_u(\rr) &\approx& \sum_i m_i f_u(\rr - \muu) \\
% & & + \sum_i m_i (\p{i}-\muu) \cdot \nabla f_u(\rr - \muu)\\
% & & + \frac{1}{2}\sum_i m_i (\p{i}-\muu)\cdot \nabla^2 f_u(\rr-\muu)\cdot (\p{i} - \muu).
% \end{eqnarray}
%
% The first order term is identically zero and can hence be dropped. Re-arranging some of the terms, introducing the
% vector $\dd=\rr-\muu=(d_x,d_y,d_z)$ and using the fact that the Hessian matrix of $f_u$ is symmetric, we get:
% \begin{eqnarray}
% a_u(\rr) &=& Mf_u(\dd) \\
% & & + \frac{1}{2} \sum_i m_i \p{i}\cdot \nabla^2f_u(\dd)\cdot \p{i} \\
% & & + \frac{1}{2} M \muu\cdot \nabla^2f_u(\dd)\cdot \muu \\
% & & - \sum_i m_i \p{i}\cdot \nabla^2f_u(\dd)\cdot \muu \\
% &=& Mf_u(\dd) \\
% & & + \frac{1}{2} \sum_i m_i \p{i}\cdot \nabla^2f_u(\dd)\cdot \p{i} \\
% & &- \frac{1}{2} M \muu\cdot \nabla^2f_u(\dd)\cdot \muu
% \end{eqnarray}
%
% The gradient of $f_u$ reads
% \begin{equation}
% \nabla f_u(\dd) = \frac{-3Gd_u}{|\dd|^5}\dd + \frac{G}{|\dd|^3}\hat{\mathbf{e}}_u,
% \end{equation}
%
% with $\hat{\mathbf{e}}_u$ a unit vector along the $u$-axis. The different components of the Hessian matrix then read:
%
% \begin{eqnarray}
% \nabla^2f_u(\dd)_{uu} &=& \frac{15Gd_u^3}{|\dd|^7} - \frac{9Gd_u}{|\dd|^5} \\
% \nabla^2f_u(\dd)_{uv} &=& \frac{15Gd_u^2d_v}{|\dd|^7} - \frac{3Gd_v}{|\dd|^5}\\
% \nabla^2f_u(\dd)_{vv} &=& \frac{15Gd_u^2d_v}{|\dd|^7} - \frac{3Gd_u}{|\dd|^5} \\
% \nabla^2f_u(\dd)_{vw} &=& \frac{15Gd_ud_vd_w}{|\dd|^7}
% \end{eqnarray}
%
% Keeping only the $xx$ term of the Hessian matrix in the Taylor expansion and introducing $\sigma_{xx}^2 =
% \sum_im_ip_{i,x}^2$, we get for the accelerations:
%
% \begin{equation}
% a_u(\rr) = Mf_u(\rr-\muu) + \frac{1}{2}(\sigma_{xx}^2 - M\mu_x^2)\nabla^2f_u(\dd)_{vv},
% \end{equation}
%
% with both $v=u$ or $v\neq u$. Expanding this coordinate by coordinate, we get:
%
% \begin{eqnarray}
% a_x(\rr) &=& M\frac{G}{|\dd|^3} d_x + \frac{1}{2}\left(\sigma_{xx}^2 - M\mu_x^2\right)\left(\frac{15Gd_x^3}{|\dd|^7} -
% \frac{9Gd_x}{|\dd|^5}\right)\\
% a_y(\rr) &=& M\frac{G}{|\dd|^3} d_y + \frac{1}{2}\left(\sigma_{xx}^2 -
% M\mu_x^2\right)\left(\frac{15Gd_xd_y^2}{|\dd|^7}-
% \frac{3Gd_x}{|\dd|^5}\right) \\
% a_z(\rr) &=& M\frac{G}{|\dd|^3} d_z + \frac{1}{2}\left(\sigma_{xx}^2 -
% M\mu_x^2\right)\left(\frac{15Gd_xd_z^2}{|\dd|^7}-
% \frac{3Gd_x}{|\dd|^5}\right)
% \end{eqnarray}
%
% The quantities $M$, $\muu$ and $\sigma_{xx}^2$ can be constructed on-the-fly by adding particles to the previous total.
%-------------------------------------------------------------------------------------------------
% \begin{equation}
% \phi(\rr) = - \sum_{i=1}^N \frac{Gm_i}{|\rr - \p{i}|} = - \sum_{i=1}^N m_i f(\rr - \p{i}),
% \end{equation}
%
% with the function $f(\rr)=G/|\rr|$. The gradient and Hessian matrix of $f$ read:
%
% \begin{equation}
% \nabla f(\rr) = \frac{G}{|\rr|^3}\rr, \quad \nabla^2 f(\rr) = G\left(
% \begin{array}{ccc}
% \frac{3r_x^2}{|\rr|^5} - \frac{1}{|\rr|^3} & \frac{3r_xr_y}{|\rr|^5} & \frac{3r_xr_z}{|\rr|^5} \\
% \frac{3r_yr_x}{|\rr|^5} & \frac{3r_y^2}{|\rr|^5} - \frac{1}{|\rr|^3} & \frac{3r_yr_z}{|\rr|^5} \\
% \frac{3r_zr_x}{|\rr|^5} &\frac{3r_zr_y}{|\rr|^5}&\frac{3r_z^2}{|\rr|^5} - \frac{1}{|\rr|^3} \\
% \end{array}
% \right)
% \end{equation}
%
%
%
% We define two quantities to simplify the notations: the total mass $M$ of the set of point masses and the centre of
% mass $\muu=(\mu_x, \mu_y, \mu_z)$ of this set:
%
% \begin{equation}
% M = \sum_{i=1}^N m_i, \qquad \muu = \frac{1}{M} \sum_{i=1}^N m_i\p{i}
% \end{equation}
%
% Expanding the potential around $\muu$, we find
%
% \begin{equation}
% \phi(\rr) \approx -\sum_{i=1}^N m_i f(\rr - \muu) - \sum_{i=1}^N \frac{m_i}{2} (\p{i} - \muu) \cdot \nabla^2
% f(\rr - \muu) \cdot (\p{i} - \muu)
% \end{equation}
%
% Note that the first order term, the ``dipole'', is identically zero and not shown here. Re-arranging the terms, we
% get:
%
% \begin{equation}
% \phi(\rr) \approx -Mf(\rr - \muu) - \frac{1}{2}\sum_{i=1}^N m_i \p{i}\cdot \nabla^2
% f(\rr - \muu) \cdot \p{i} + \frac{M}{2} \muu\cdot \nabla^2
% f(\rr - \muu) \cdot \muu \nonumber
% \end{equation}
%
%
% Let's now assume that on average $|x_{i,x} - \mu_x| \gg |x_{i,y} - \mu_y| \approx |x_{i,z} - \mu_z|$, then the only
% term in the matrix that needs to be computed is $\nabla^2 f(\rr-\muu)_{xx}$. The expression then reduces to
%
% \begin{equation}
% \phi(\rr) \approx -Mf(\rr - \muu) - \frac{1}{2}\sum_{i=1}^N m_i x_{i,x}^2 \nabla^2f(\rr - \muu)_{xx} +
% \frac{M}{2} \mu_x^2 \nabla^2f(\rr - \muu)_{xx}
% \end{equation}
%
% We can introduce the quantity $d=\sum_{i=1}^N m_i x_{i,x}^2$ to simplify the expression even more:
%
% \begin{equation}
% \phi(\rr) \approx -Mf(\rr - \muu) - \left(\frac{d}{2} - \frac{M\mu_x^2}{2}\right) \nabla^2f(\rr - \muu)_{xx}
% \end{equation}
%
% Using the definition of $f$, we get:
%
% \begin{equation}
% \phi(\rr) \approx -\frac{GM}{|\rr - \muu|} - G\left(\frac{d}{2} - \frac{M\mu_x^2}{2}\right) \left(
% \frac{3(r_x-\mu_x)^2}{|\rr-\muu|^5} - \frac{1}{|\rr-\muu|^3}\right).
% \end{equation}
%
% The acceleration created by the set of particles on a test particle at position $\rr$ is then
%
% \begin{eqnarray}
% \mathbf{a}(\rr)&=& -\nabla\phi(\rr) \nonumber \\
% &\approx& - \frac{GM}{|\rr - \muu|^3}(\rr-\muu) \nonumber \\
% & &- G\left(\frac{d}{2} - \frac{M\mu_x^2}{2}\right)\left(\frac{15(r_x-\mu_x)^2}{|\rr-\muu|^7} -
% \frac{1}{|\rr-\muu|^5}\right) (\rr -\muu) \nonumber \\
% & & + G\left(\frac{d}{2} - \frac{M\mu_x^2}{2}\right) \frac{6(r_x-\mu_x)^2}{|\rr-\muu|^7} \mathbf{e}_x,
% \end{eqnarray}
%
% where $\mathbf{e}_x$ is a unit vector along the x-axis. The quantities $M$, $\muu$ and $d$ can be constructed
% on-the-fly by adding particles to the previous total.
\end{document}
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment