diff --git a/examples/theory/multipoles.tex b/examples/theory/multipoles.tex index 54cafb8e917090eb6289a8250a341850b8da0074..e986929ab5341972a8f7d6e00b74e2d2b7952d68 100644 --- a/examples/theory/multipoles.tex +++ b/examples/theory/multipoles.tex @@ -19,7 +19,7 @@ Bold quantities are vectors. The indices $\alpha,\beta$ run over the directions $x,y,z$. -\section{Construction of multi-poles} +\section{Construction of multipoles} For a set of particles $A$ at position $\p{i}=(x_i, y_i, z_i)$ with mass $m_i$, we can construct the total mass of the set @@ -30,8 +30,8 @@ $M_A$ and its centre of mass $\muu_A=(\mu_{A,x}, \mu_{A,y}, \mu_{A,z})$: m_i\p{i}. \end{equation} -The multi-poles can then be computed around the centre of mass $\muu_A$. We use -Dehnen's notation. +For a set of particles $A$, the multipoles can be computed around the +centre of mass $\muu_A$. The first LHS term uses Dehnen's notation.\\ Monopole: \begin{equation} @@ -40,24 +40,50 @@ M_{(0,0,0)} = M_A Dipole: \begin{eqnarray} -M_{(1,0,0)} &=& 0\\ -M_{(0,1,0)} &=& 0\\ -M_{(0,0,1)} &=& 0 +M_{(1,0,0)} &=& P_{A,x}~= 0\\ +M_{(0,1,0)} &=& P_{A,y}~=0\\ +M_{(0,0,1)} &=& P_{A,z}~=0 \end{eqnarray} Quadrupole: \begin{eqnarray} -M_{(2,0,0)} &=& I_{xx}~= \sum_{i\in A}m_i ( p_{i,x}-\mu_{A,x})^2\\ -M_{(0,2,0)} &=& I_{yy}~= \sum_{i\in A}m_i ( p_{i,y}-\mu_{A,y})^2\\ -M_{(0,0,2)} &=& I_{zz}~= \sum_{i\in A}m_i ( p_{i,z}-\mu_{A,z})^2\\ -M_{(1,1,0)} &=& I_{xy}~= \sum_{i\in A}m_i ( p_{i,x}-\mu_{A,x})( +M_{(2,0,0)} &=& I_{A,xx}~= \sum_{i\in A}m_i ( p_{i,x}-\mu_{A,x})^2\\ +M_{(0,2,0)} &=& I_{A,yy}~= \sum_{i\in A}m_i ( p_{i,y}-\mu_{A,y})^2\\ +M_{(0,0,2)} &=& I_{A,zz}~= \sum_{i\in A}m_i ( p_{i,z}-\mu_{A,z})^2\\ +M_{(1,1,0)} &=& I_{A,xy}~= \sum_{i\in A}m_i ( p_{i,x}-\mu_{A,x})( p_{i,y}-\mu_{A,y})\\ -M_{(0,1,1)} &=& I_{yz}~= \sum_{i\in A}m_i ( p_{i,y}-\mu_{A,y})( +M_{(0,1,1)} &=& I_{A,yz}~= \sum_{i\in A}m_i ( p_{i,y}-\mu_{A,y})( p_{i,z}-\mu_{A,z})\\ -M_{(1,0,1)} &=& I_{xz}~= \sum_{i\in A}m_i ( p_{i,x}-\mu_{A,x})( -p_{i,z}-\mu_{A,z} +M_{(1,0,1)} &=& I_{A,xz}~= \sum_{i\in A}m_i ( p_{i,x}-\mu_{A,x})( +p_{i,z}-\mu_{A,z}) \end{eqnarray} \section{Recursive construction of the quadrupoles} +Given a set of multipoles $B$ expressed around their centre of masses +$\muu_{B}$, we can construct the total multipoles around the centre of mass +$\muu_{A}$ of the system consisting of all the particles contained in each +individual (disjoint) sub-sets $B$. This allows to construct the multipoles in +the tree recursively.\\ + +Monopole: +\begin{equation} + M_{A} = \sum_{B\in A} M_B +\end{equation} + +Dipole: +\begin{equation} + P_{A,\alpha} = 0 +\end{equation} + +Quadrupole: +\begin{equation} + I_{A,\alpha\beta} = \sum_{B\in A}\left( I_{B,\alpha\beta} + +M_B\mu_{B,\alpha}\mu_{B,\beta} \right) - \frac{1}{M_A} +\mu_{A,\alpha}\mu_{A,\beta} +\end{equation} + + +\section{Derivatives of the potential} + \end{document}