Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
Q
QuickSched
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Deploy
Releases
Model registry
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
SWIFT
QuickSched
Commits
c9908c58
Commit
c9908c58
authored
10 years ago
by
Matthieu Schaller
Browse files
Options
Downloads
Patches
Plain Diff
Finished writing down the B-H equations up to quadrupole term.
parent
96d82b79
Branches
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
examples/theory/multipoles.tex
+69
-16
69 additions, 16 deletions
examples/theory/multipoles.tex
with
69 additions
and
16 deletions
examples/theory/multipoles.tex
+
69
−
16
View file @
c9908c58
...
...
@@ -6,8 +6,8 @@
\newcommand
{
\rr
}{
\mathbf
{
r
}}
\newcommand
{
\dd
}{
\mathbf
{
d
}}
\newcommand
{
\vv
}{
\mathbf
{
v
}}
\newcommand
{
\p
}
[1]
{
\mathbf
{
p
}_
#1
}
\newcommand
{
\acc
}{
\mathbf
{
a
}}
\newcommand
{
\p
}
[1]
{
\mathbf
{
p
}_
{
#1
}
}
\newcommand
{
\acc
}
[1]
{
\mathbf
{
a
}
_{
#1
}
}
\newcommand
{
\muu
}{
\boldsymbol
{
\mu
}}
\title
{
B-H and FMM equations up to quadrupole terms
}
...
...
@@ -17,7 +17,8 @@
\maketitle
Bold quantities are vectors. The indices
$
\alpha
,
\beta
$
run over the directions
$
x,y,z
$
.
Bold quantities are vectors, underlined quantities are matrices. The indices
$
\alpha
,
\beta
$
run over the directions
$
x,y,z
$
.
\section
{
Construction of multipoles
}
...
...
@@ -26,7 +27,8 @@ we can construct the total mass of the set
$
M
_
A
$
and its centre of mass
$
\muu
_
A
=(
\mu
_{
A,x
}
,
\mu
_{
A,y
}
,
\mu
_{
A,z
}
)
$
:
\begin{equation}
M
_
A =
\sum
_{
i
\in
A
}
m
_
i,
\qquad
\muu
_
A =
\frac
{
1
}{
M
_
A
}
\sum
_{
i
\in
A
}
M
_{{
\rm
tot
}
,A
}
=
\sum
_{
i
\in
A
}
m
_
i,
\qquad
\muu
_
A =
\frac
{
1
}{
M
_{{
\rm
tot
}
,A
}}
\sum
_{
i
\in
A
}
m
_
i
\p
{
i
}
.
\end{equation}
...
...
@@ -35,7 +37,7 @@ centre of mass $\muu_A$. The first LHS term uses Dehnen's notation.\\
Monopole:
\begin{equation}
M
_{
(0,0,0)
}
= M
_
A
M
_{
(0,0,0)
}
= M
_
{{
\rm
tot
}
, A
}
\end{equation}
Dipole:
...
...
@@ -47,15 +49,18 @@ M_{(0,0,1)} &=& P_{A,z}~=0
Quadrupole:
\begin{eqnarray}
M
_{
(2,0,0)
}
&
=
&
I
_{
A,xx
}
~=
\sum
_{
i
\in
A
}
m
_
i ( p
_{
i,x
}
-
\mu
_{
A,x
}
)
^
2
\\
M
_{
(0,2,0)
}
&
=
&
I
_{
A,yy
}
~=
\sum
_{
i
\in
A
}
m
_
i ( p
_{
i,y
}
-
\mu
_{
A,y
}
)
^
2
\\
M
_{
(0,0,2)
}
&
=
&
I
_{
A,zz
}
~=
\sum
_{
i
\in
A
}
m
_
i ( p
_{
i,z
}
-
\mu
_{
A,z
}
)
^
2
\\
M
_{
(1,1,0)
}
&
=
&
I
_{
A,xy
}
~=
\sum
_{
i
\in
A
}
m
_
i ( p
_{
i,x
}
-
\mu
_{
A,x
}
)(
p
_{
i,y
}
-
\mu
_{
A,y
}
)
\\
M
_{
(0,1,1)
}
&
=
&
I
_{
A,yz
}
~=
\sum
_{
i
\in
A
}
m
_
i ( p
_{
i,y
}
-
\mu
_{
A,y
}
)(
p
_{
i,z
}
-
\mu
_{
A,z
}
)
\\
M
_{
(1,0,1)
}
&
=
&
I
_{
A,xz
}
~=
\sum
_{
i
\in
A
}
m
_
i ( p
_{
i,x
}
-
\mu
_{
A,x
}
)(
p
_{
i,z
}
-
\mu
_{
A,z
}
)
M
_{
(2,0,0)
}
&
=
&
\frac
{
1
}{
2
}
I
_{
A,xx
}
~=
\frac
{
1
}{
2
}
\sum
_{
i
\in
A
}
m
_
i (
p
_{
i,x
}
-
\mu
_{
A,x
}
)
^
2
\\
M
_{
(0,2,0)
}
&
=
&
\frac
{
1
}{
2
}
I
_{
A,yy
}
~=
\frac
{
1
}{
2
}
\sum
_{
i
\in
A
}
m
_
i (
p
_{
i,y
}
-
\mu
_{
A,y
}
)
^
2
\\
M
_{
(0,0,2)
}
&
=
&
\frac
{
1
}{
2
}
I
_{
A,zz
}
~=
\frac
{
1
}{
2
}
\sum
_{
i
\in
A
}
m
_
i (
p
_{
i,z
}
-
\mu
_{
A,z
}
)
^
2
\\
M
_{
(1,1,0)
}
&
=
&
\frac
{
1
}{
2
}
I
_{
A,xy
}
~=
\frac
{
1
}{
2
}
\sum
_{
i
\in
A
}
m
_
i (
p
_{
i,x
}
-
\mu
_{
A,x
}
)( p
_{
i,y
}
-
\mu
_{
A,y
}
)
\\
M
_{
(0,1,1)
}
&
=
&
\frac
{
1
}{
2
}
I
_{
A,yz
}
~=
\frac
{
1
}{
2
}
\sum
_{
i
\in
A
}
m
_
i (
p
_{
i,y
}
-
\mu
_{
A,y
}
)( p
_{
i,z
}
-
\mu
_{
A,z
}
)
\\
M
_{
(1,0,1)
}
&
=
&
\frac
{
1
}{
2
}
I
_{
A,xz
}
~=
\frac
{
1
}{
2
}
\sum
_{
i
\in
A
}
m
_
i (
p
_{
i,x
}
-
\mu
_{
A,x
}
)( p
_{
i,z
}
-
\mu
_{
A,z
}
)
\end{eqnarray}
\section
{
Recursive construction of the quadrupoles
}
...
...
@@ -68,7 +73,7 @@ the tree recursively.\\
Monopole:
\begin{equation}
M
_{
A
}
=
\sum
_{
B
\in
A
}
M
_
B
M
_{
{
\rm
tot
}
,
A
}
=
\sum
_{
B
\in
A
}
M
_
{{
\rm
tot
}
,B
}
\end{equation}
Dipole:
...
...
@@ -79,7 +84,7 @@ Dipole:
Quadrupole:
\begin{equation}
I
_{
A,
\alpha\beta
}
=
\sum
_{
B
\in
A
}
\left
( I
_{
B,
\alpha\beta
}
+
M
_
B
\mu
_{
B,
\alpha
}
\mu
_{
B,
\beta
}
\right
) -
\frac
{
1
}{
M
_
A
}
M
_
{{
\rm
tot
}
,B
}
\mu
_{
B,
\alpha
}
\mu
_{
B,
\beta
}
\right
) -
\frac
{
1
}{
M
_
{{
\rm
tot
}
,A
}
}
\mu
_{
A,
\alpha
}
\mu
_{
A,
\beta
}
\end{equation}
...
...
@@ -115,4 +120,52 @@ D_{(0,1,1)} &=& \partial_{yz} \phi(\rr)~= \frac{3Gr_yr_z}{|\rr|^5}\\
D
_{
(1,0,1)
}
&
=
&
\partial
_{
xz
}
\phi
(
\rr
)~=
\frac
{
3Gr
_
xr
_
z
}{
|
\rr
|
^
5
}
\end{eqnarray}
\section
{
B-H potential and accelerations
}
In the B-H approximation, the potential at position
$
\p
{
i
}$
due to a set of
particles
$
A
$
is given by
\begin{equation}
\phi
(
\p
{
i
}
) = -
\sum
_{
\bf
n
}
M
_{
A,
\bf
n
}
D
_{
\bf
n
}
(
\p
{
i
}
-
\muu
_
A)
\end{equation}
Keeping only the terms up to second order (i.e. letting the sum run over
all vectors with
$
|
{
\bf
n
}
|
\leq
2
$
) and writing
$
\rr
=
\p
{
i
}
-
\muu
_
A
$
, we get:
\begin{eqnarray}
\phi
(
\p
{
i
}
)
&
=
&
-M
_{{
\rm
tot
}
,A
}
\frac
{
G
}{
|
\rr
|
}
-
\frac
{
1
}{
2
}
\sum
_
\alpha
I
_{
A,
\alpha
}
\left
(
\frac
{
3Gr
_
\alpha
^
2
}{
|
\rr
|
^
5
}
-
\frac
{
G
}{
|
\rr
|
^
3
}
\right
)
\\
&
&
-
\frac
{
1
}{
2
}
\sum
_{
\alpha
,
\beta
}
\delta
_{
\alpha\beta
}
I
_{
A,
\alpha\beta
}
\frac
{
3Gr
_
\alpha
r
_
\beta
}{
|
\rr
|
^
5
}
\\
&
=
&
-M
_{{
\rm
tot
}
,A
}
\frac
{
G
}{
|
\rr
|
}
+
\frac
{
1
}{
2
}
\left
( I
_{
A,xx
}
+ I
_{
A,yy
}
+I
_{
A,zz
}
\right
)
\frac
{
G
}{
|
\rr
|
^
3
}
\\
&
&
-
\frac
{
1
}{
2
}
\sum
_{
\alpha
,
\beta
}
I
_{
A,
\alpha\beta
}
\frac
{
3Gr
_
\alpha
r
_
\beta
}{
|
\rr
|
^
5
}
\\
&
=
&
-M
_{{
\rm
tot
}
,A
}
\frac
{
G
}{
|
\rr
|
}
+
\frac
{
G
}{
2
}
\frac
{{
\rm
tr
}
(
\underline
{
I
_
A
}
)
}{
|
\rr
|
^
3
}
-
\frac
{
3G
}{
2
}
\frac
{
\rr
^
T
\cdot
\underline
{
I
_
A
}
\cdot
\rr
}{
|
\rr
|
^
5
}
\end{eqnarray}
The accelerations
$
\acc
{
i
}
=
-
\nabla
_{
\rr
}
\phi
(
\p
{
i
}
)
$
are then given by:
\begin{eqnarray}
a
_{
i,x
}
&
=
&
\left
[M
_{{
\rm
tot
}
,A
}
\frac
{
G
}{
|
\rr
|
^
3
}
-
\frac
{
3G
}{
2
}
\frac
{{
\rm
tr
}
(
\underline
{
I
_
A
}
)
}{
|
\rr
|
^
5
}
-
\frac
{
3G
\underline
{
I
_
A
}}{
|
\rr
|
^
5
}
+
\frac
{
15G
}{
2
}
\frac
{
(
\rr
^
T
\cdot
\underline
{
I
_
A
}
\cdot
\rr
)
}{
|
\rr
|
^
7
}
\right
] r
_
x
\\
a
_{
i,y
}
&
=
&
\left
[M
_{{
\rm
tot
}
,A
}
\frac
{
G
}{
|
\rr
|
^
3
}
-
\frac
{
3G
}{
2
}
\frac
{{
\rm
tr
}
(
\underline
{
I
_
A
}
)
}{
|
\rr
|
^
5
}
-
\frac
{
3G
\underline
{
I
_
A
}}{
|
\rr
|
^
5
}
+
\frac
{
15G
}{
2
}
\frac
{
(
\rr
^
T
\cdot
\underline
{
I
_
A
}
\cdot
\rr
)
}{
|
\rr
|
^
7
}
\right
] r
_
y
\\
a
_{
i,z
}
&
=
&
\left
[M
_{{
\rm
tot
}
,A
}
\frac
{
G
}{
|
\rr
|
^
3
}
-
\frac
{
3G
}{
2
}
\frac
{{
\rm
tr
}
(
\underline
{
I
_
A
}
)
}{
|
\rr
|
^
5
}
-
\frac
{
3G
\underline
{
I
_
A
}}{
|
\rr
|
^
5
}
+
\frac
{
15G
}{
2
}
\frac
{
(
\rr
^
T
\cdot
\underline
{
I
_
A
}
\cdot
\rr
)
}{
|
\rr
|
^
7
}
\right
] r
_
z
\end{eqnarray}
\end{document}
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment