Skip to content
Snippets Groups Projects
Commit c9908c58 authored by Matthieu Schaller's avatar Matthieu Schaller
Browse files

Finished writing down the B-H equations up to quadrupole term.

parent 96d82b79
Branches
No related tags found
No related merge requests found
......@@ -6,8 +6,8 @@
\newcommand{\rr}{\mathbf{r}}
\newcommand{\dd}{\mathbf{d}}
\newcommand{\vv}{\mathbf{v}}
\newcommand{\p}[1]{\mathbf{p}_#1}
\newcommand{\acc}{\mathbf{a}}
\newcommand{\p}[1]{\mathbf{p}_{#1}}
\newcommand{\acc}[1]{\mathbf{a}_{#1}}
\newcommand{\muu}{\boldsymbol{\mu}}
\title{B-H and FMM equations up to quadrupole terms}
......@@ -17,7 +17,8 @@
\maketitle
Bold quantities are vectors. The indices $\alpha,\beta$ run over the directions $x,y,z$.
Bold quantities are vectors, underlined quantities are matrices. The indices
$\alpha,\beta$ run over the directions $x,y,z$.
\section{Construction of multipoles}
......@@ -26,7 +27,8 @@ we can construct the total mass of the set
$M_A$ and its centre of mass $\muu_A=(\mu_{A,x}, \mu_{A,y}, \mu_{A,z})$:
\begin{equation}
M_A = \sum_{i\in A} m_i, \qquad \muu_A = \frac{1}{M_A} \sum_{i \in A}
M_{{\rm tot},A} = \sum_{i\in A} m_i, \qquad \muu_A = \frac{1}{M_{{\rm tot},A}}
\sum_{i \in A}
m_i\p{i}.
\end{equation}
......@@ -35,7 +37,7 @@ centre of mass $\muu_A$. The first LHS term uses Dehnen's notation.\\
Monopole:
\begin{equation}
M_{(0,0,0)} = M_A
M_{(0,0,0)} = M_{{\rm tot}, A}
\end{equation}
Dipole:
......@@ -47,15 +49,18 @@ M_{(0,0,1)} &=& P_{A,z}~=0
Quadrupole:
\begin{eqnarray}
M_{(2,0,0)} &=& I_{A,xx}~= \sum_{i\in A}m_i ( p_{i,x}-\mu_{A,x})^2\\
M_{(0,2,0)} &=& I_{A,yy}~= \sum_{i\in A}m_i ( p_{i,y}-\mu_{A,y})^2\\
M_{(0,0,2)} &=& I_{A,zz}~= \sum_{i\in A}m_i ( p_{i,z}-\mu_{A,z})^2\\
M_{(1,1,0)} &=& I_{A,xy}~= \sum_{i\in A}m_i ( p_{i,x}-\mu_{A,x})(
p_{i,y}-\mu_{A,y})\\
M_{(0,1,1)} &=& I_{A,yz}~= \sum_{i\in A}m_i ( p_{i,y}-\mu_{A,y})(
p_{i,z}-\mu_{A,z})\\
M_{(1,0,1)} &=& I_{A,xz}~= \sum_{i\in A}m_i ( p_{i,x}-\mu_{A,x})(
p_{i,z}-\mu_{A,z})
M_{(2,0,0)} &=& \frac{1}{2}I_{A,xx}~= \frac{1}{2}\sum_{i\in A}m_i (
p_{i,x}-\mu_{A,x})^2\\
M_{(0,2,0)} &=& \frac{1}{2}I_{A,yy}~= \frac{1}{2}\sum_{i\in A}m_i (
p_{i,y}-\mu_{A,y})^2\\
M_{(0,0,2)} &=& \frac{1}{2}I_{A,zz}~= \frac{1}{2}\sum_{i\in A}m_i (
p_{i,z}-\mu_{A,z})^2\\
M_{(1,1,0)} &=& \frac{1}{2}I_{A,xy}~= \frac{1}{2}\sum_{i\in A}m_i (
p_{i,x}-\mu_{A,x})( p_{i,y}-\mu_{A,y})\\
M_{(0,1,1)} &=& \frac{1}{2}I_{A,yz}~= \frac{1}{2}\sum_{i\in A}m_i (
p_{i,y}-\mu_{A,y})( p_{i,z}-\mu_{A,z})\\
M_{(1,0,1)} &=& \frac{1}{2}I_{A,xz}~= \frac{1}{2}\sum_{i\in A}m_i (
p_{i,x}-\mu_{A,x})( p_{i,z}-\mu_{A,z})
\end{eqnarray}
\section{Recursive construction of the quadrupoles}
......@@ -68,7 +73,7 @@ the tree recursively.\\
Monopole:
\begin{equation}
M_{A} = \sum_{B\in A} M_B
M_{{\rm tot},A} = \sum_{B\in A} M_{{\rm tot},B}
\end{equation}
Dipole:
......@@ -79,7 +84,7 @@ Dipole:
Quadrupole:
\begin{equation}
I_{A,\alpha\beta} = \sum_{B\in A}\left( I_{B,\alpha\beta} +
M_B\mu_{B,\alpha}\mu_{B,\beta} \right) - \frac{1}{M_A}
M_{{\rm tot},B}\mu_{B,\alpha}\mu_{B,\beta} \right) - \frac{1}{M_{{\rm tot},A}}
\mu_{A,\alpha}\mu_{A,\beta}
\end{equation}
......@@ -115,4 +120,52 @@ D_{(0,1,1)} &=& \partial_{yz} \phi(\rr)~= \frac{3Gr_yr_z}{|\rr|^5}\\
D_{(1,0,1)} &=& \partial_{xz} \phi(\rr)~= \frac{3Gr_xr_z}{|\rr|^5}
\end{eqnarray}
\section{B-H potential and accelerations}
In the B-H approximation, the potential at position $\p{i}$ due to a set of
particles $A$ is given by
\begin{equation}
\phi(\p{i}) = -\sum_{\bf n} M_{A, \bf n} D_{\bf n}(\p{i} - \muu_A)
\end{equation}
Keeping only the terms up to second order (i.e. letting the sum run over
all vectors with $|{\bf n}|\leq2$) and writing $\rr = \p{i} - \muu_A$, we get:
\begin{eqnarray}
\phi(\p{i}) &=& -M_{{\rm tot},A} \frac{G}{|\rr|} -\frac{1}{2}\sum_\alpha
I_{A,\alpha} \left(\frac{3Gr_\alpha^2}{|\rr|^5} -
\frac{G}{|\rr|^3}\right) \\
& &- \frac{1}{2}\sum_{\alpha,\beta} \delta_{\alpha\beta}I_{A,\alpha\beta}
\frac{3Gr_\alpha r_\beta}{|\rr|^5} \\
&=& -M_{{\rm tot},A} \frac{G}{|\rr|} +
\frac{1}{2}\left( I_{A,xx} + I_{A,yy} +I_{A,zz}\right)\frac{G}{|\rr|^3} \\
& & - \frac{1}{2}\sum_{\alpha,\beta} I_{A,\alpha\beta} \frac{3Gr_\alpha
r_\beta}{|\rr|^5} \\
&=& -M_{{\rm tot},A} \frac{G}{|\rr|} + \frac{G}{2} \frac{{\rm
tr}(\underline{I_A})}{|\rr|^3} - \frac{3G}{2}\frac{\rr^T \cdot
\underline{I_A} \cdot \rr}{|\rr|^5}
\end{eqnarray}
The accelerations $\acc{i} = -\nabla_{\rr}\phi(\p{i})$ are then given by:
\begin{eqnarray}
a_{i,x} &=& \left[M_{{\rm tot},A} \frac{G}{|\rr|^3} - \frac{3G}{2}
\frac{{\rm tr}(\underline{I_A})}{|\rr|^5} - \frac{3G\underline{I_A}}{|\rr|^5} +
\frac{15G}{2}\frac{(\rr^T \cdot
\underline{I_A} \cdot \rr)}{|\rr|^7}\right] r_x \\
a_{i,y} &=& \left[M_{{\rm tot},A} \frac{G}{|\rr|^3} - \frac{3G}{2}
\frac{{\rm tr}(\underline{I_A})}{|\rr|^5} - \frac{3G\underline{I_A}}{|\rr|^5} +
\frac{15G}{2}\frac{(\rr^T \cdot
\underline{I_A} \cdot \rr)}{|\rr|^7}\right] r_y\\
a_{i,z} &=& \left[M_{{\rm tot},A} \frac{G}{|\rr|^3} - \frac{3G}{2}
\frac{{\rm tr}(\underline{I_A})}{|\rr|^5} - \frac{3G\underline{I_A}}{|\rr|^5} +
\frac{15G}{2}\frac{(\rr^T \cdot
\underline{I_A} \cdot \rr)}{|\rr|^7}\right] r_z
\end{eqnarray}
\end{document}
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment