Skip to content
Snippets Groups Projects
Commit 96d82b79 authored by Matthieu Schaller's avatar Matthieu Schaller
Browse files

Added expressions for the derivatives of the potential.

parent da3a3b86
No related branches found
No related tags found
No related merge requests found
......@@ -10,7 +10,7 @@
\newcommand{\acc}{\mathbf{a}}
\newcommand{\muu}{\boldsymbol{\mu}}
\title{FMM and B-H equations up to quadrupole terms}
\title{B-H and FMM equations up to quadrupole terms}
\author{Matthieu Schaller}
\begin{document}
......@@ -86,4 +86,33 @@ M_B\mu_{B,\alpha}\mu_{B,\beta} \right) - \frac{1}{M_A}
\section{Derivatives of the potential}
The gravitational potential is given by $\phi(\rr) = G/|\rr|$. Its derivatives
are given by the following expressions. The first LHS term uses Dehnen's
notation.\\
0-th order:
\begin{equation}
D_{(0,0,0)}(\rr) = \phi(\rr) = \frac{G}{|\rr|}
\end{equation}
1-st order:
\begin{eqnarray}
D_{(1,0,0)}(\rr) &=& \partial_x \phi(\rr)~=\frac{G}{|\rr|^3}r_x\\
D_{(0,1,0)}(\rr) &=& \partial_y \phi(\rr)~=\frac{G}{|\rr|^3}r_y\\
D_{(0,0,1)}(\rr) &=& \partial_z \phi(\rr)~=\frac{G}{|\rr|^3}r_z
\end{eqnarray}
2-nd order:
\begin{eqnarray}
D_{(2,0,0)} &=& \partial_{xx} \phi(\rr)~= \frac{3Gr_x^2}{|\rr|^5} -
\frac{G}{|\rr|^3}\\
D_{(0,2,0)} &=& \partial_{yy} \phi(\rr)~= \frac{3Gr_y^2}{|\rr|^5} -
\frac{G}{|\rr|^3}\\
D_{(0,0,2)} &=& \partial_{zz} \phi(\rr)~= \frac{3Gr_z^2}{|\rr|^5} -
\frac{G}{|\rr|^3}\\
D_{(1,1,0)} &=& \partial_{xy} \phi(\rr)~= \frac{3Gr_xr_y}{|\rr|^5} \\
D_{(0,1,1)} &=& \partial_{yz} \phi(\rr)~= \frac{3Gr_yr_z}{|\rr|^5}\\
D_{(1,0,1)} &=& \partial_{xz} \phi(\rr)~= \frac{3Gr_xr_z}{|\rr|^5}
\end{eqnarray}
\end{document}
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment