diff --git a/examples/theory/multipoles.tex b/examples/theory/multipoles.tex index 8e938e12c6e7588877a2040681496e6249f1003b..edae2f85018c87526c254f4996d8e7f72bfc5406 100644 --- a/examples/theory/multipoles.tex +++ b/examples/theory/multipoles.tex @@ -6,8 +6,8 @@ \newcommand{\rr}{\mathbf{r}} \newcommand{\dd}{\mathbf{d}} \newcommand{\vv}{\mathbf{v}} -\newcommand{\p}[1]{\mathbf{p}_#1} -\newcommand{\acc}{\mathbf{a}} +\newcommand{\p}[1]{\mathbf{p}_{#1}} +\newcommand{\acc}[1]{\mathbf{a}_{#1}} \newcommand{\muu}{\boldsymbol{\mu}} \title{B-H and FMM equations up to quadrupole terms} @@ -17,7 +17,8 @@ \maketitle -Bold quantities are vectors. The indices $\alpha,\beta$ run over the directions $x,y,z$. +Bold quantities are vectors, underlined quantities are matrices. The indices +$\alpha,\beta$ run over the directions $x,y,z$. \section{Construction of multipoles} @@ -26,7 +27,8 @@ we can construct the total mass of the set $M_A$ and its centre of mass $\muu_A=(\mu_{A,x}, \mu_{A,y}, \mu_{A,z})$: \begin{equation} - M_A = \sum_{i\in A} m_i, \qquad \muu_A = \frac{1}{M_A} \sum_{i \in A} + M_{{\rm tot},A} = \sum_{i\in A} m_i, \qquad \muu_A = \frac{1}{M_{{\rm tot},A}} +\sum_{i \in A} m_i\p{i}. \end{equation} @@ -35,7 +37,7 @@ centre of mass $\muu_A$. The first LHS term uses Dehnen's notation.\\ Monopole: \begin{equation} -M_{(0,0,0)} = M_A +M_{(0,0,0)} = M_{{\rm tot}, A} \end{equation} Dipole: @@ -47,15 +49,18 @@ M_{(0,0,1)} &=& P_{A,z}~=0 Quadrupole: \begin{eqnarray} -M_{(2,0,0)} &=& I_{A,xx}~= \sum_{i\in A}m_i ( p_{i,x}-\mu_{A,x})^2\\ -M_{(0,2,0)} &=& I_{A,yy}~= \sum_{i\in A}m_i ( p_{i,y}-\mu_{A,y})^2\\ -M_{(0,0,2)} &=& I_{A,zz}~= \sum_{i\in A}m_i ( p_{i,z}-\mu_{A,z})^2\\ -M_{(1,1,0)} &=& I_{A,xy}~= \sum_{i\in A}m_i ( p_{i,x}-\mu_{A,x})( -p_{i,y}-\mu_{A,y})\\ -M_{(0,1,1)} &=& I_{A,yz}~= \sum_{i\in A}m_i ( p_{i,y}-\mu_{A,y})( -p_{i,z}-\mu_{A,z})\\ -M_{(1,0,1)} &=& I_{A,xz}~= \sum_{i\in A}m_i ( p_{i,x}-\mu_{A,x})( -p_{i,z}-\mu_{A,z}) +M_{(2,0,0)} &=& \frac{1}{2}I_{A,xx}~= \frac{1}{2}\sum_{i\in A}m_i ( +p_{i,x}-\mu_{A,x})^2\\ +M_{(0,2,0)} &=& \frac{1}{2}I_{A,yy}~= \frac{1}{2}\sum_{i\in A}m_i ( +p_{i,y}-\mu_{A,y})^2\\ +M_{(0,0,2)} &=& \frac{1}{2}I_{A,zz}~= \frac{1}{2}\sum_{i\in A}m_i ( +p_{i,z}-\mu_{A,z})^2\\ +M_{(1,1,0)} &=& \frac{1}{2}I_{A,xy}~= \frac{1}{2}\sum_{i\in A}m_i ( +p_{i,x}-\mu_{A,x})( p_{i,y}-\mu_{A,y})\\ +M_{(0,1,1)} &=& \frac{1}{2}I_{A,yz}~= \frac{1}{2}\sum_{i\in A}m_i ( +p_{i,y}-\mu_{A,y})( p_{i,z}-\mu_{A,z})\\ +M_{(1,0,1)} &=& \frac{1}{2}I_{A,xz}~= \frac{1}{2}\sum_{i\in A}m_i ( +p_{i,x}-\mu_{A,x})( p_{i,z}-\mu_{A,z}) \end{eqnarray} \section{Recursive construction of the quadrupoles} @@ -68,7 +73,7 @@ the tree recursively.\\ Monopole: \begin{equation} - M_{A} = \sum_{B\in A} M_B + M_{{\rm tot},A} = \sum_{B\in A} M_{{\rm tot},B} \end{equation} Dipole: @@ -79,7 +84,7 @@ Dipole: Quadrupole: \begin{equation} I_{A,\alpha\beta} = \sum_{B\in A}\left( I_{B,\alpha\beta} + -M_B\mu_{B,\alpha}\mu_{B,\beta} \right) - \frac{1}{M_A} +M_{{\rm tot},B}\mu_{B,\alpha}\mu_{B,\beta} \right) - \frac{1}{M_{{\rm tot},A}} \mu_{A,\alpha}\mu_{A,\beta} \end{equation} @@ -115,4 +120,52 @@ D_{(0,1,1)} &=& \partial_{yz} \phi(\rr)~= \frac{3Gr_yr_z}{|\rr|^5}\\ D_{(1,0,1)} &=& \partial_{xz} \phi(\rr)~= \frac{3Gr_xr_z}{|\rr|^5} \end{eqnarray} + +\section{B-H potential and accelerations} + +In the B-H approximation, the potential at position $\p{i}$ due to a set of +particles $A$ is given by + +\begin{equation} + \phi(\p{i}) = -\sum_{\bf n} M_{A, \bf n} D_{\bf n}(\p{i} - \muu_A) +\end{equation} + +Keeping only the terms up to second order (i.e. letting the sum run over +all vectors with $|{\bf n}|\leq2$) and writing $\rr = \p{i} - \muu_A$, we get: + +\begin{eqnarray} + \phi(\p{i}) &=& -M_{{\rm tot},A} \frac{G}{|\rr|} -\frac{1}{2}\sum_\alpha +I_{A,\alpha} \left(\frac{3Gr_\alpha^2}{|\rr|^5} - +\frac{G}{|\rr|^3}\right) \\ +& &- \frac{1}{2}\sum_{\alpha,\beta} \delta_{\alpha\beta}I_{A,\alpha\beta} +\frac{3Gr_\alpha r_\beta}{|\rr|^5} \\ + &=& -M_{{\rm tot},A} \frac{G}{|\rr|} + +\frac{1}{2}\left( I_{A,xx} + I_{A,yy} +I_{A,zz}\right)\frac{G}{|\rr|^3} \\ + & & - \frac{1}{2}\sum_{\alpha,\beta} I_{A,\alpha\beta} \frac{3Gr_\alpha +r_\beta}{|\rr|^5} \\ +&=& -M_{{\rm tot},A} \frac{G}{|\rr|} + \frac{G}{2} \frac{{\rm +tr}(\underline{I_A})}{|\rr|^3} - \frac{3G}{2}\frac{\rr^T \cdot +\underline{I_A} \cdot \rr}{|\rr|^5} +\end{eqnarray} + +The accelerations $\acc{i} = -\nabla_{\rr}\phi(\p{i})$ are then given by: + +\begin{eqnarray} + a_{i,x} &=& \left[M_{{\rm tot},A} \frac{G}{|\rr|^3} - \frac{3G}{2} +\frac{{\rm tr}(\underline{I_A})}{|\rr|^5} - \frac{3G\underline{I_A}}{|\rr|^5} + +\frac{15G}{2}\frac{(\rr^T \cdot +\underline{I_A} \cdot \rr)}{|\rr|^7}\right] r_x \\ + a_{i,y} &=& \left[M_{{\rm tot},A} \frac{G}{|\rr|^3} - \frac{3G}{2} +\frac{{\rm tr}(\underline{I_A})}{|\rr|^5} - \frac{3G\underline{I_A}}{|\rr|^5} + +\frac{15G}{2}\frac{(\rr^T \cdot +\underline{I_A} \cdot \rr)}{|\rr|^7}\right] r_y\\ + a_{i,z} &=& \left[M_{{\rm tot},A} \frac{G}{|\rr|^3} - \frac{3G}{2} +\frac{{\rm tr}(\underline{I_A})}{|\rr|^5} - \frac{3G\underline{I_A}}{|\rr|^5} + +\frac{15G}{2}\frac{(\rr^T \cdot +\underline{I_A} \cdot \rr)}{|\rr|^7}\right] r_z +\end{eqnarray} + + + + \end{document}