Skip to content
Snippets Groups Projects
Commit bf33e5c7 authored by Matthieu Schaller's avatar Matthieu Schaller
Browse files

Corrected tzpos and simplified notation.

parent c9908c58
No related branches found
No related tags found
No related merge requests found
...@@ -127,42 +127,37 @@ In the B-H approximation, the potential at position $\p{i}$ due to a set of ...@@ -127,42 +127,37 @@ In the B-H approximation, the potential at position $\p{i}$ due to a set of
particles $A$ is given by particles $A$ is given by
\begin{equation} \begin{equation}
\phi(\p{i}) = -\sum_{\bf n} M_{A, \bf n} D_{\bf n}(\p{i} - \muu_A) \phi(\p{i}) = -\sum_{\bf n} M_{A, \bf n} D_{\bf n}(\muu_A - \p{i})
\end{equation} \end{equation}
Keeping only the terms up to second order (i.e. letting the sum run over Keeping only the terms up to second order (i.e. letting the sum run over
all vectors with $|{\bf n}|\leq2$) and writing $\rr = \p{i} - \muu_A$, we get: all vectors with $|{\bf n}|\leq2$) and writing $\rr_{i,A} = \muu_A - \p{i}$, we
get:
\begin{eqnarray} \begin{eqnarray}
\phi(\p{i}) &=& -M_{{\rm tot},A} \frac{G}{|\rr|} -\frac{1}{2}\sum_\alpha \phi(\p{i}) &=& -M_{{\rm tot},A} \frac{G}{|\rr_{i,A}|} -\frac{1}{2}\sum_\alpha
I_{A,\alpha} \left(\frac{3Gr_\alpha^2}{|\rr|^5} - I_{A,\alpha} \left(\frac{3Gr_\alpha^2}{|\rr_{i,A}|^5} -
\frac{G}{|\rr|^3}\right) \\ \frac{G}{|\rr_{i,A}|^3}\right) \\
& &- \frac{1}{2}\sum_{\alpha,\beta} \delta_{\alpha\beta}I_{A,\alpha\beta} & &+ \frac{1}{2}\sum_{\alpha,\beta} (1-\delta_{\alpha\beta})I_{A,\alpha\beta}
\frac{3Gr_\alpha r_\beta}{|\rr|^5} \\ \frac{3Gr_\alpha r_\beta}{|\rr_{i,A}|^5} \\
&=& -M_{{\rm tot},A} \frac{G}{|\rr|} + &=& -M_{{\rm tot},A} \frac{G}{|\rr_{i,A}|} +
\frac{1}{2}\left( I_{A,xx} + I_{A,yy} +I_{A,zz}\right)\frac{G}{|\rr|^3} \\ \frac{1}{2}\left( I_{A,xx} + I_{A,yy} +I_{A,zz}\right)\frac{G}{|\rr_{i,A}|^3}
\\
& & - \frac{1}{2}\sum_{\alpha,\beta} I_{A,\alpha\beta} \frac{3Gr_\alpha & & - \frac{1}{2}\sum_{\alpha,\beta} I_{A,\alpha\beta} \frac{3Gr_\alpha
r_\beta}{|\rr|^5} \\ r_\beta}{|\rr_{i,A}|^5} \\
&=& -M_{{\rm tot},A} \frac{G}{|\rr|} + \frac{G}{2} \frac{{\rm &=& -G \left[ \frac{M_{{\rm tot},A}}{|\rr_{i,A}|} - \frac{1}{2} \frac{{\rm
tr}(\underline{I_A})}{|\rr|^3} - \frac{3G}{2}\frac{\rr^T \cdot tr}(\underline{I_A})}{|\rr_{i,A}|^3} + \frac{3}{2}\frac{\rr_{i,A}^T \cdot
\underline{I_A} \cdot \rr}{|\rr|^5} \underline{I_A} \cdot \rr_{i,A}}{|\rr_{i,A}|^5}\right]
\end{eqnarray} \end{eqnarray}
The accelerations $\acc{i} = -\nabla_{\rr}\phi(\p{i})$ are then given by: The accelerations $\acc{i} = -\nabla_{\rr_{i,A}}\phi(\p{i})$ are then given by:
\begin{eqnarray} \begin{eqnarray}
a_{i,x} &=& \left[M_{{\rm tot},A} \frac{G}{|\rr|^3} - \frac{3G}{2} \acc{i} = G\left[\frac{M_{{\rm tot},A} \rr_{i,A}}{|\rr_{i,A}|}
\frac{{\rm tr}(\underline{I_A})}{|\rr|^5} - \frac{3G\underline{I_A}}{|\rr|^5} + -\frac{3}{2}\frac{{\rm tr}(\underline{I_A})\rr_{i,A}}{|\rr_{i,A}|^5}
\frac{15G}{2}\frac{(\rr^T \cdot -\frac{3\underline{I_A}\cdot\rr_{i,A}}{|\rr_{i,A}|^5}
\underline{I_A} \cdot \rr)}{|\rr|^7}\right] r_x \\ +\frac{15}{2}\frac{(\rr_{i,A}^T \cdot \underline{I_A} \cdot
a_{i,y} &=& \left[M_{{\rm tot},A} \frac{G}{|\rr|^3} - \frac{3G}{2} \rr_{i,A})\rr_{i,A}}{|\rr_{i,A}|^7}\right]
\frac{{\rm tr}(\underline{I_A})}{|\rr|^5} - \frac{3G\underline{I_A}}{|\rr|^5} +
\frac{15G}{2}\frac{(\rr^T \cdot
\underline{I_A} \cdot \rr)}{|\rr|^7}\right] r_y\\
a_{i,z} &=& \left[M_{{\rm tot},A} \frac{G}{|\rr|^3} - \frac{3G}{2}
\frac{{\rm tr}(\underline{I_A})}{|\rr|^5} - \frac{3G\underline{I_A}}{|\rr|^5} +
\frac{15G}{2}\frac{(\rr^T \cdot
\underline{I_A} \cdot \rr)}{|\rr|^7}\right] r_z
\end{eqnarray} \end{eqnarray}
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment