Skip to content
Snippets Groups Projects
Commit bf33e5c7 authored by Matthieu Schaller's avatar Matthieu Schaller
Browse files

Corrected tzpos and simplified notation.

parent c9908c58
Branches
No related tags found
No related merge requests found
......@@ -127,42 +127,37 @@ In the B-H approximation, the potential at position $\p{i}$ due to a set of
particles $A$ is given by
\begin{equation}
\phi(\p{i}) = -\sum_{\bf n} M_{A, \bf n} D_{\bf n}(\p{i} - \muu_A)
\phi(\p{i}) = -\sum_{\bf n} M_{A, \bf n} D_{\bf n}(\muu_A - \p{i})
\end{equation}
Keeping only the terms up to second order (i.e. letting the sum run over
all vectors with $|{\bf n}|\leq2$) and writing $\rr = \p{i} - \muu_A$, we get:
all vectors with $|{\bf n}|\leq2$) and writing $\rr_{i,A} = \muu_A - \p{i}$, we
get:
\begin{eqnarray}
\phi(\p{i}) &=& -M_{{\rm tot},A} \frac{G}{|\rr|} -\frac{1}{2}\sum_\alpha
I_{A,\alpha} \left(\frac{3Gr_\alpha^2}{|\rr|^5} -
\frac{G}{|\rr|^3}\right) \\
& &- \frac{1}{2}\sum_{\alpha,\beta} \delta_{\alpha\beta}I_{A,\alpha\beta}
\frac{3Gr_\alpha r_\beta}{|\rr|^5} \\
&=& -M_{{\rm tot},A} \frac{G}{|\rr|} +
\frac{1}{2}\left( I_{A,xx} + I_{A,yy} +I_{A,zz}\right)\frac{G}{|\rr|^3} \\
\phi(\p{i}) &=& -M_{{\rm tot},A} \frac{G}{|\rr_{i,A}|} -\frac{1}{2}\sum_\alpha
I_{A,\alpha} \left(\frac{3Gr_\alpha^2}{|\rr_{i,A}|^5} -
\frac{G}{|\rr_{i,A}|^3}\right) \\
& &+ \frac{1}{2}\sum_{\alpha,\beta} (1-\delta_{\alpha\beta})I_{A,\alpha\beta}
\frac{3Gr_\alpha r_\beta}{|\rr_{i,A}|^5} \\
&=& -M_{{\rm tot},A} \frac{G}{|\rr_{i,A}|} +
\frac{1}{2}\left( I_{A,xx} + I_{A,yy} +I_{A,zz}\right)\frac{G}{|\rr_{i,A}|^3}
\\
& & - \frac{1}{2}\sum_{\alpha,\beta} I_{A,\alpha\beta} \frac{3Gr_\alpha
r_\beta}{|\rr|^5} \\
&=& -M_{{\rm tot},A} \frac{G}{|\rr|} + \frac{G}{2} \frac{{\rm
tr}(\underline{I_A})}{|\rr|^3} - \frac{3G}{2}\frac{\rr^T \cdot
\underline{I_A} \cdot \rr}{|\rr|^5}
r_\beta}{|\rr_{i,A}|^5} \\
&=& -G \left[ \frac{M_{{\rm tot},A}}{|\rr_{i,A}|} - \frac{1}{2} \frac{{\rm
tr}(\underline{I_A})}{|\rr_{i,A}|^3} + \frac{3}{2}\frac{\rr_{i,A}^T \cdot
\underline{I_A} \cdot \rr_{i,A}}{|\rr_{i,A}|^5}\right]
\end{eqnarray}
The accelerations $\acc{i} = -\nabla_{\rr}\phi(\p{i})$ are then given by:
The accelerations $\acc{i} = -\nabla_{\rr_{i,A}}\phi(\p{i})$ are then given by:
\begin{eqnarray}
a_{i,x} &=& \left[M_{{\rm tot},A} \frac{G}{|\rr|^3} - \frac{3G}{2}
\frac{{\rm tr}(\underline{I_A})}{|\rr|^5} - \frac{3G\underline{I_A}}{|\rr|^5} +
\frac{15G}{2}\frac{(\rr^T \cdot
\underline{I_A} \cdot \rr)}{|\rr|^7}\right] r_x \\
a_{i,y} &=& \left[M_{{\rm tot},A} \frac{G}{|\rr|^3} - \frac{3G}{2}
\frac{{\rm tr}(\underline{I_A})}{|\rr|^5} - \frac{3G\underline{I_A}}{|\rr|^5} +
\frac{15G}{2}\frac{(\rr^T \cdot
\underline{I_A} \cdot \rr)}{|\rr|^7}\right] r_y\\
a_{i,z} &=& \left[M_{{\rm tot},A} \frac{G}{|\rr|^3} - \frac{3G}{2}
\frac{{\rm tr}(\underline{I_A})}{|\rr|^5} - \frac{3G\underline{I_A}}{|\rr|^5} +
\frac{15G}{2}\frac{(\rr^T \cdot
\underline{I_A} \cdot \rr)}{|\rr|^7}\right] r_z
\acc{i} = G\left[\frac{M_{{\rm tot},A} \rr_{i,A}}{|\rr_{i,A}|}
-\frac{3}{2}\frac{{\rm tr}(\underline{I_A})\rr_{i,A}}{|\rr_{i,A}|^5}
-\frac{3\underline{I_A}\cdot\rr_{i,A}}{|\rr_{i,A}|^5}
+\frac{15}{2}\frac{(\rr_{i,A}^T \cdot \underline{I_A} \cdot
\rr_{i,A})\rr_{i,A}}{|\rr_{i,A}|^7}\right]
\end{eqnarray}
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment