Commit fcb58df6 authored by Matthieu Schaller's avatar Matthieu Schaller
Browse files

Test case for the interaction in 27 cells is now ready

parent 9e6fbd41
......@@ -236,6 +236,53 @@ void pairs_all_density(struct runner *r, struct cell *ci, struct cell *cj) {
}
}
void self_all_density(struct runner *r, struct cell *ci) {
float r2, hi, hj, hig2, hjg2, dxi[3]; //, dxj[3];
struct part *pi, *pj;
/* Implements a double-for loop and checks every interaction */
for (int i = 0; i < ci->count; ++i) {
pi = &ci->parts[i];
hi = pi->h;
hig2 = hi * hi * kernel_gamma2;
for (int j = i + 1; j < ci->count; ++j) {
pj = &ci->parts[j];
hj = pj->h;
hjg2 = hj * hj * kernel_gamma2;
if (pi == pj) continue;
/* Pairwise distance */
r2 = 0.0f;
for (int k = 0; k < 3; k++) {
dxi[k] = ci->parts[i].x[k] - ci->parts[j].x[k];
r2 += dxi[k] * dxi[k];
}
/* Hit or miss? */
if (r2 < hig2) {
/* Interact */
runner_iact_nonsym_density(r2, dxi, hi, hj, pi, pj);
}
/* Hit or miss? */
if (r2 < hjg2) {
dxi[0] = -dxi[0];
dxi[1] = -dxi[1];
dxi[2] = -dxi[2];
/* Interact */
runner_iact_nonsym_density(r2, dxi, hj, hi, pj, pi);
}
}
}
}
void pairs_single_grav(double *dim, long long int pid,
struct gpart *__restrict__ parts, int N, int periodic) {
......
......@@ -33,6 +33,7 @@ void pairs_single_density(double *dim, long long int pid,
struct part *__restrict__ parts, int N, int periodic);
void pairs_all_density(struct runner *r, struct cell *ci, struct cell *cj);
void self_all_density(struct runner *r, struct cell *ci);
void pairs_n2(double *dim, struct part *__restrict__ parts, int N,
int periodic);
......
......@@ -34,34 +34,40 @@ double random_uniform(double a, double b) {
/* n is both particles per axis and box size:
* particles are generated on a mesh with unit spacing
*/
struct cell *make_cell(size_t n, double *offset, double h,
unsigned long long *partId, double pert) {
size_t count = n * n * n;
struct cell *make_cell(size_t n, double *offset, double size, double h,
double density, long long *partId, double pert) {
const size_t count = n * n * n;
const double volume = size * size * size;
struct cell *cell = malloc(sizeof(struct cell));
bzero(cell, sizeof(struct cell));
struct part *part;
size_t x, y, z, size;
size = count * sizeof(struct part);
if (posix_memalign((void **)&cell->parts, part_align, size) != 0) {
if (posix_memalign((void **)&cell->parts, part_align,
count * sizeof(struct part)) != 0) {
error("couldn't allocate particles, no. of particles: %d", (int)count);
}
bzero(cell->parts, count * sizeof(struct part));
part = cell->parts;
for (x = 0; x < n; ++x) {
for (y = 0; y < n; ++y) {
for (z = 0; z < n; ++z) {
/* Construct the parts */
struct part *part = cell->parts;
for (size_t x = 0; x < n; ++x) {
for (size_t y = 0; y < n; ++y) {
for (size_t z = 0; z < n; ++z) {
// Add .5 for symmetry: 0.5, 1.5, 2.5 vs. 0, 1, 2
part->x[0] = x + offset[0] + 0.5 + random_uniform(-0.5, 0.5) * pert;
part->x[1] = y + offset[1] + 0.5 + random_uniform(-0.5, 0.5) * pert;
part->x[2] = z + offset[2] + 0.5 + random_uniform(-0.5, 0.5) * pert;
part->v[0] = 1.0f;
part->v[1] = 1.0f;
part->v[2] = 1.0f;
part->h = h;
part->x[0] =
offset[0] +
size * (x + 0.5 + random_uniform(-0.5, 0.5) * pert) / (float)n;
part->x[1] =
offset[1] +
size * (y + 0.5 + random_uniform(-0.5, 0.5) * pert) / (float)n;
part->x[2] =
offset[2] +
size * (z + 0.5 + random_uniform(-0.5, 0.5) * pert) / (float)n;
part->v[0] = 1. * random_uniform(-0.1, 0.1);
part->v[1] = 1. * random_uniform(-0.1, 0.1);
part->v[2] = 1. * random_uniform(-0.1, 0.1);
part->h = size * h / (float)n;
part->id = ++(*partId);
part->mass = 1.0f;
part->mass = density * volume / count;
part->ti_begin = 0;
part->ti_end = 1;
++part;
......@@ -69,13 +75,14 @@ struct cell *make_cell(size_t n, double *offset, double h,
}
}
/* Cell properties */
cell->split = 0;
cell->h_max = h;
cell->count = count;
cell->dx_max = 0.;
cell->h[0] = n;
cell->h[1] = n;
cell->h[2] = n;
cell->h[0] = size;
cell->h[1] = size;
cell->h[2] = size;
cell->loc[0] = offset[0];
cell->loc[1] = offset[1];
cell->loc[2] = offset[2];
......@@ -109,10 +116,21 @@ void zero_particle_fields(struct cell *c) {
}
}
/**
* @brief Ends the loop by adding the appropriate coefficients
*/
void end_calculation(struct cell *c) {
for (size_t pid = 0; pid < c->count; pid++) {
hydro_end_density(&c->parts[pid], 1);
}
}
/**
* @brief Dump all the particles to a file
*/
void dump_particle_fields(char *fileName, struct cell *ci, struct cell *cj) {
void dump_particle_fields(char *fileName, struct cell *main_cell,
struct cell **cells) {
FILE *file = fopen(fileName, "w");
......@@ -120,24 +138,35 @@ void dump_particle_fields(char *fileName, struct cell *ci, struct cell *cj) {
"# ID pos:[x y z] rho rho_dh wcount wcount_dh div_v curl_v:[x "
"y z]\n");
for (size_t pid = 0; pid < ci->count; pid++) {
fprintf(file, "%6llu %f %f %f %f %f %f %f %f %f %f %f\n", ci->parts[pid].id,
ci->parts[pid].x[0], ci->parts[pid].x[1], ci->parts[pid].x[2],
ci->parts[pid].rho, ci->parts[pid].rho_dh,
ci->parts[pid].density.wcount, ci->parts[pid].density.wcount_dh,
ci->parts[pid].div_v, ci->parts[pid].density.rot_v[0],
ci->parts[pid].density.rot_v[1], ci->parts[pid].density.rot_v[2]);
fprintf(file, "# -----------------------------------\n");
for (size_t pid = 0; pid < main_cell->count; pid++) {
fprintf(file, "%6llu %f %f %f %f %f %f %f %f %f %f %f\n",
main_cell->parts[pid].id, main_cell->parts[pid].x[0],
main_cell->parts[pid].x[1], main_cell->parts[pid].x[2],
main_cell->parts[pid].rho, main_cell->parts[pid].rho_dh,
main_cell->parts[pid].density.wcount,
main_cell->parts[pid].density.wcount_dh,
main_cell->parts[pid].div_v, main_cell->parts[pid].density.rot_v[0],
main_cell->parts[pid].density.rot_v[1],
main_cell->parts[pid].density.rot_v[2]);
}
fprintf(file, "# -----------------------------------\n");
for (int j = 0; j < 27; ++j) {
struct cell *cj = cells[j];
if (cj == main_cell) continue;
fprintf(file, "# -----------------------------------\n");
for (size_t pjd = 0; pjd < cj->count; pjd++) {
fprintf(file, "%6llu %f %f %f %f %f %f %f %f %f %f %f\n", cj->parts[pjd].id,
cj->parts[pjd].x[0], cj->parts[pjd].x[1], cj->parts[pjd].x[2],
cj->parts[pjd].rho, cj->parts[pjd].rho_dh,
cj->parts[pjd].density.wcount, cj->parts[pjd].density.wcount_dh,
cj->parts[pjd].div_v, cj->parts[pjd].density.rot_v[0],
cj->parts[pjd].density.rot_v[1], cj->parts[pjd].density.rot_v[2]);
for (size_t pjd = 0; pjd < cj->count; pjd++) {
fprintf(file, "%6llu %f %f %f %f %f %f %f %f %f %f %f\n",
cj->parts[pjd].id, cj->parts[pjd].x[0], cj->parts[pjd].x[1],
cj->parts[pjd].x[2], cj->parts[pjd].rho, cj->parts[pjd].rho_dh,
cj->parts[pjd].density.wcount, cj->parts[pjd].density.wcount_dh,
cj->parts[pjd].div_v, cj->parts[pjd].density.rot_v[0],
cj->parts[pjd].density.rot_v[1], cj->parts[pjd].density.rot_v[2]);
}
}
fclose(file);
......@@ -145,44 +174,45 @@ void dump_particle_fields(char *fileName, struct cell *ci, struct cell *cj) {
/* Just a forward declaration... */
void runner_dopair1_density(struct runner *r, struct cell *ci, struct cell *cj);
void runner_doself1_density(struct runner *r, struct cell *ci);
/* And go... */
int main(int argc, char *argv[]) {
size_t particles = 0, runs = 0, volume, type = 0;
double offset[3] = {0, 0, 0}, h = 1.1255;
double perturbation = 0.1;
struct cell *ci, *cj;
struct space space;
struct engine engine;
struct runner runner;
char c;
static unsigned long long partId = 0;
size_t runs = 0, particles = 0;
double h = 1.1255, size = 1., rho = 1.;
double perturbation = 0.;
char outputFileNameExtension[200] = "";
char outputFileName[200] = "";
ticks tic, toc, time;
/* Initialize CPU frequency, this also starts time. */
unsigned long long cpufreq = 0;
clocks_set_cpufreq(cpufreq);
/* Get some randomness going */
srand(0);
while ((c = getopt(argc, argv, "h:p:r:t:d:f:")) != -1) {
char c;
while ((c = getopt(argc, argv, "m:s:h:p:r:t:d:f:")) != -1) {
switch (c) {
case 'h':
sscanf(optarg, "%lf", &h);
break;
case 's':
sscanf(optarg, "%lf", &size);
break;
case 'p':
sscanf(optarg, "%zu", &particles);
break;
case 'r':
sscanf(optarg, "%zu", &runs);
break;
case 't':
sscanf(optarg, "%zu", &type);
break;
case 'd':
sscanf(optarg, "%lf", &perturbation);
break;
case 'm':
sscanf(optarg, "%lf", &rho);
break;
case 'f':
strcpy(outputFileNameExtension, optarg);
break;
......@@ -192,55 +222,79 @@ int main(int argc, char *argv[]) {
}
}
if (h < 0 || particles == 0 || runs == 0 || type > 2) {
if (h < 0 || particles == 0 || runs == 0) {
printf(
"\nUsage: %s -p PARTICLES_PER_AXIS -r NUMBER_OF_RUNS [OPTIONS...]\n"
"\nGenerates a cell pair, filled with particles on a Cartesian grid."
"\nThese are then interacted using runner_dopair1_density."
"\n\nOptions:"
"\n-t TYPE=0 - cells share face (0), edge (1) or corner (2)"
"\n-h DISTANCE=1.1255 - smoothing length"
"\n-d pert - perturbation to apply to the particles [0,1["
"\n-f fileName - part of the file name used to save the dumps\n",
"\n-h DISTANCE=1.1255 - Smoothing length"
"\n-m rho - Physical density in the cell"
"\n-s size - Physical size of the cell"
"\n-d pert - Perturbation to apply to the particles [0,1["
"\n-f fileName - Part of the file name used to save the dumps\n",
argv[0]);
exit(1);
}
/* Build the infrastructure */
struct space space;
space.periodic = 0;
space.h_max = h;
space.dt_step = 0.1;
struct engine engine;
engine.s = &space;
engine.time = 0.1f;
engine.ti_current = 1;
struct runner runner;
runner.e = &engine;
volume = particles * particles * particles;
message("particles: %zu B\npositions: 0 B", 2 * volume * sizeof(struct part));
/* Construct some cells */
struct cell *cells[27];
struct cell *main_cell;
static long long partId = 0;
for (int i = 0; i < 3; ++i) {
for (int j = 0; j < 3; ++j) {
for (int k = 0; k < 3; ++k) {
ci = make_cell(particles, offset, h, &partId, perturbation);
for (size_t i = 0; i < type + 1; ++i) offset[i] = particles;
cj = make_cell(particles, offset, h, &partId, perturbation);
double offset[3] = {i * size, j * size, k * size};
time = 0;
cells[i * 9 + j * 3 + k] =
make_cell(particles, offset, size, h, rho, &partId, perturbation);
}
}
}
main_cell = cells[13];
ticks time = 0;
for (size_t i = 0; i < runs; ++i) {
/* Zero the fields */
zero_particle_fields(ci);
zero_particle_fields(cj);
for (int j = 0; j < 27; ++j) zero_particle_fields(cells[j]);
tic = getticks();
const ticks tic = getticks();
/* Run the test */
runner_dopair1_density(&runner, ci, cj);
/* Run all the pairs */
for (int j = 0; j < 27; ++j)
if (cells[j] != main_cell)
runner_dopair1_density(&runner, main_cell, cells[j]);
toc = getticks();
/* And now the self-interaction */
runner_doself1_density(&runner, main_cell);
const ticks toc = getticks();
time += toc - tic;
/* Let's get physical ! */
end_calculation(main_cell);
/* Dump if necessary */
if (i % 50 == 0) {
sprintf(outputFileName, "swift_dopair_27_%s.dat", outputFileNameExtension);
dump_particle_fields(outputFileName, ci, cj);
sprintf(outputFileName, "swift_dopair_27_%s.dat",
outputFileNameExtension);
dump_particle_fields(outputFileName, main_cell, cells);
}
}
......@@ -250,26 +304,31 @@ int main(int argc, char *argv[]) {
/* Now perform a brute-force version for accuracy tests */
/* Zero the fields */
zero_particle_fields(ci);
zero_particle_fields(cj);
for (int i = 0; i < 27; ++i) zero_particle_fields(cells[i]);
const ticks tic = getticks();
/* Run all the brute-force pairs */
for (int j = 0; j < 27; ++j)
if (cells[j] != main_cell) pairs_all_density(&runner, main_cell, cells[j]);
tic = getticks();
/* And now the self-interaction */
self_all_density(&runner, main_cell);
/* Run the brute-force test */
pairs_all_density(&runner, ci, cj);
const ticks toc = getticks();
toc = getticks();
/* Let's get physical ! */
end_calculation(main_cell);
/* Dump */
sprintf(outputFileName, "brute_force_27_%s.dat", outputFileNameExtension);
dump_particle_fields(outputFileName, ci, cj);
dump_particle_fields(outputFileName, main_cell, cells);
/* Output timing */
message("Brute force calculation took %lli ticks.", toc - tic);
/* Clean things to make the sanitizer happy ... */
clean_up(ci);
clean_up(cj);
for (int i = 0; i < 27; ++i) clean_up(cells[i]);
return 0;
}
Supports Markdown
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment