Skip to content
Snippets Groups Projects
Commit fa7ddd11 authored by Matthieu Schaller's avatar Matthieu Schaller
Browse files

Applied formatting style to test.c and removed unneccessary debug lines.

Former-commit-id: ec86b9cfdb18a98d6ff353227ac58642b9deca3e
parent d8da74e4
No related branches found
No related tags found
No related merge requests found
......@@ -3,20 +3,20 @@
* Copyright (c) 2012 Pedro Gonnet (pedro.gonnet@durham.ac.uk),
* Matthieu Schaller (matthieu.schaller@durham.ac.uk)
* 2015 Peter W. Draper (p.w.draper@durham.ac.uk)
*
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*
******************************************************************************/
/* Config parameters. */
......@@ -35,12 +35,12 @@
/* Conditional headers. */
#ifdef HAVE_LIBZ
#include <zlib.h>
#include <zlib.h>
#endif
/* MPI headers. */
#ifdef WITH_MPI
#include <mpi.h>
#include <mpi.h>
#endif
/* Local headers. */
......@@ -48,71 +48,67 @@
/* Ticks per second on this machine. */
#ifndef CPU_TPS
#define CPU_TPS 2.40e9
#define CPU_TPS 2.40e9
#endif
/* Engine policy flags. */
#ifndef ENGINE_POLICY
#define ENGINE_POLICY engine_policy_none
#define ENGINE_POLICY engine_policy_none
#endif
/**
* @brief Mapping function to draw a specific cell (gnuplot).
*/
void map_cells_plot ( struct cell *c , void *data ) {
int depth = *(int *)data;
double *l = c->loc, *h = c->h;
if ( c->depth <= depth ) {
printf( "%.16e %.16e %.16e\n" , l[0] , l[1] , l[2] );
printf( "%.16e %.16e %.16e\n" , l[0]+h[0] , l[1] , l[2] );
printf( "%.16e %.16e %.16e\n" , l[0]+h[0] , l[1]+h[1] , l[2] );
printf( "%.16e %.16e %.16e\n\n\n" , l[0] , l[1]+h[1] , l[2] );
printf( "%.16e %.16e %.16e\n" , l[0] , l[1] , l[2]+h[2] );
printf( "%.16e %.16e %.16e\n" , l[0]+h[0] , l[1] , l[2]+h[2] );
printf( "%.16e %.16e %.16e\n" , l[0]+h[0] , l[1]+h[1] , l[2]+h[2] );
printf( "%.16e %.16e %.16e\n\n\n" , l[0] , l[1]+h[1] , l[2]+h[2] );
printf( "%.16e %.16e %.16e\n" , l[0] , l[1] , l[2] );
printf( "%.16e %.16e %.16e\n" , l[0] , l[1]+h[1] , l[2] );
printf( "%.16e %.16e %.16e\n" , l[0] , l[1]+h[1] , l[2]+h[2] );
printf( "%.16e %.16e %.16e\n\n\n" , l[0] , l[1] , l[2]+h[2] );
printf( "%.16e %.16e %.16e\n" , l[0]+h[0] , l[1] , l[2] );
printf( "%.16e %.16e %.16e\n" , l[0]+h[0] , l[1]+h[1] , l[2] );
printf( "%.16e %.16e %.16e\n" , l[0]+h[0] , l[1]+h[1] , l[2]+h[2] );
printf( "%.16e %.16e %.16e\n\n\n" , l[0]+h[0] , l[1] , l[2] +h[2]);
printf( "%.16e %.16e %.16e\n" , l[0] , l[1] , l[2] );
printf( "%.16e %.16e %.16e\n" , l[0] , l[1] , l[2]+h[2] );
printf( "%.16e %.16e %.16e\n" , l[0]+h[0] , l[1] , l[2]+h[2] );
printf( "%.16e %.16e %.16e\n\n\n" , l[0]+h[0] , l[1] , l[2] );
printf( "%.16e %.16e %.16e\n" , l[0] , l[1]+h[1] , l[2] );
printf( "%.16e %.16e %.16e\n" , l[0] , l[1]+h[1] , l[2]+h[2] );
printf( "%.16e %.16e %.16e\n" , l[0]+h[0] , l[1]+h[1] , l[2]+h[2] );
printf( "%.16e %.16e %.16e\n\n\n" , l[0]+h[0] , l[1]+h[1] , l[2] );
if ( !c->split ) {
for ( int k = 0 ; k < c->count ; k++ )
printf( "0 0 0 %.16e %.16e %.16e\n" ,
c->parts[k].x[0] , c->parts[k].x[1] , c->parts[k].x[2] );
printf( "\n\n" );
}
/* else
for ( int k = 0 ; k < 8 ; k++ )
if ( c->progeny[k] != NULL )
map_cells_plot( c->progeny[k] , data ); */
}
void map_cells_plot(struct cell *c, void *data) {
}
int depth = *(int *)data;
double *l = c->loc, *h = c->h;
if (c->depth <= depth) {
printf("%.16e %.16e %.16e\n", l[0], l[1], l[2]);
printf("%.16e %.16e %.16e\n", l[0] + h[0], l[1], l[2]);
printf("%.16e %.16e %.16e\n", l[0] + h[0], l[1] + h[1], l[2]);
printf("%.16e %.16e %.16e\n\n\n", l[0], l[1] + h[1], l[2]);
printf("%.16e %.16e %.16e\n", l[0], l[1], l[2] + h[2]);
printf("%.16e %.16e %.16e\n", l[0] + h[0], l[1], l[2] + h[2]);
printf("%.16e %.16e %.16e\n", l[0] + h[0], l[1] + h[1], l[2] + h[2]);
printf("%.16e %.16e %.16e\n\n\n", l[0], l[1] + h[1], l[2] + h[2]);
printf("%.16e %.16e %.16e\n", l[0], l[1], l[2]);
printf("%.16e %.16e %.16e\n", l[0], l[1] + h[1], l[2]);
printf("%.16e %.16e %.16e\n", l[0], l[1] + h[1], l[2] + h[2]);
printf("%.16e %.16e %.16e\n\n\n", l[0], l[1], l[2] + h[2]);
printf("%.16e %.16e %.16e\n", l[0] + h[0], l[1], l[2]);
printf("%.16e %.16e %.16e\n", l[0] + h[0], l[1] + h[1], l[2]);
printf("%.16e %.16e %.16e\n", l[0] + h[0], l[1] + h[1], l[2] + h[2]);
printf("%.16e %.16e %.16e\n\n\n", l[0] + h[0], l[1], l[2] + h[2]);
printf("%.16e %.16e %.16e\n", l[0], l[1], l[2]);
printf("%.16e %.16e %.16e\n", l[0], l[1], l[2] + h[2]);
printf("%.16e %.16e %.16e\n", l[0] + h[0], l[1], l[2] + h[2]);
printf("%.16e %.16e %.16e\n\n\n", l[0] + h[0], l[1], l[2]);
printf("%.16e %.16e %.16e\n", l[0], l[1] + h[1], l[2]);
printf("%.16e %.16e %.16e\n", l[0], l[1] + h[1], l[2] + h[2]);
printf("%.16e %.16e %.16e\n", l[0] + h[0], l[1] + h[1], l[2] + h[2]);
printf("%.16e %.16e %.16e\n\n\n", l[0] + h[0], l[1] + h[1], l[2]);
if (!c->split) {
for (int k = 0; k < c->count; k++)
printf("0 0 0 %.16e %.16e %.16e\n", c->parts[k].x[0], c->parts[k].x[1],
c->parts[k].x[2]);
printf("\n\n");
}
/* else
for ( int k = 0 ; k < 8 ; k++ )
if ( c->progeny[k] != NULL )
map_cells_plot( c->progeny[k] , data ); */
}
}
/**
* @brief Mapping function for checking if each part is in its box.
......@@ -127,129 +123,112 @@ void map_cells_plot ( struct cell *c , void *data ) {
} */
/**
* @brief Mapping function for neighbour count.
*/
void map_cellcheck ( struct cell *c , void *data ) {
int k, *count = (int *)data;
struct part *p;
__sync_fetch_and_add( count , c->count );
/* Loop over all parts and check if they are in the cell. */
for ( k = 0 ; k < c->count ; k++ ) {
p = &c->parts[k];
if ( p->x[0] < c->loc[0] || p->x[1] < c->loc[1] || p->x[2] < c->loc[2] ||
p->x[0] > c->loc[0] + c->h[0] || p->x[1] > c->loc[1] + c->h[1] || p->x[2] > c->loc[2] + c->h[2] ) {
printf( "map_cellcheck: particle at [ %.16e %.16e %.16e ] outside of cell [ %.16e %.16e %.16e ] - [ %.16e %.16e %.16e ].\n" ,
p->x[0] , p->x[1] , p->x[2] ,
c->loc[0] , c->loc[1] , c->loc[2] ,
c->loc[0] + c->h[0] , c->loc[1] + c->h[1] , c->loc[2] + c->h[2] );
error( "particle out of bounds!" );
}
}
void map_cellcheck(struct cell *c, void *data) {
int k, *count = (int *)data;
struct part *p;
__sync_fetch_and_add(count, c->count);
/* Loop over all parts and check if they are in the cell. */
for (k = 0; k < c->count; k++) {
p = &c->parts[k];
if (p->x[0] < c->loc[0] || p->x[1] < c->loc[1] || p->x[2] < c->loc[2] ||
p->x[0] > c->loc[0] + c->h[0] || p->x[1] > c->loc[1] + c->h[1] ||
p->x[2] > c->loc[2] + c->h[2]) {
printf(
"map_cellcheck: particle at [ %.16e %.16e %.16e ] outside of cell [ "
"%.16e %.16e %.16e ] - [ %.16e %.16e %.16e ].\n",
p->x[0], p->x[1], p->x[2], c->loc[0], c->loc[1], c->loc[2],
c->loc[0] + c->h[0], c->loc[1] + c->h[1], c->loc[2] + c->h[2]);
error("particle out of bounds!");
}
}
}
/**
* @brief Mapping function for maxdepth cell count.
*/
void map_maxdepth ( struct cell *c , void *data ) {
void map_maxdepth(struct cell *c, void *data) {
int maxdepth = ((int *)data)[0];
int *count = &((int *)data)[1];
// printf( "%e\n" , p->count );
int maxdepth = ((int *)data)[0];
int *count = &((int *)data)[1];
if ( c->depth == maxdepth )
*count += 1;
}
// printf( "%e\n" , p->count );
if (c->depth == maxdepth) *count += 1;
}
/**
* @brief Mapping function for neighbour count.
*/
void map_count ( struct part *p , struct cell *c , void *data ) {
double *wcount = (double *)data;
// printf( "%i %e %e\n" , p->id , p->count , p->count_dh );
void map_count(struct part *p, struct cell *c, void *data) {
*wcount += p->density.wcount;
double *wcount = (double *)data;
}
// printf( "%i %e %e\n" , p->id , p->count , p->count_dh );
void map_wcount_min ( struct part *p , struct cell *c , void *data ) {
*wcount += p->density.wcount;
}
struct part **p2 = (struct part **)data;
if ( p->density.wcount < (*p2)->density.wcount )
*p2 = p;
void map_wcount_min(struct part *p, struct cell *c, void *data) {
}
struct part **p2 = (struct part **)data;
void map_wcount_max ( struct part *p , struct cell *c , void *data ) {
if (p->density.wcount < (*p2)->density.wcount) *p2 = p;
}
struct part **p2 = (struct part **)data;
if ( p->density.wcount > (*p2)->density.wcount )
*p2 = p;
void map_wcount_max(struct part *p, struct cell *c, void *data) {
}
struct part **p2 = (struct part **)data;
void map_h_min ( struct part *p , struct cell *c , void *data ) {
if (p->density.wcount > (*p2)->density.wcount) *p2 = p;
}
struct part **p2 = (struct part **)data;
if ( p->h < (*p2)->h )
*p2 = p;
void map_h_min(struct part *p, struct cell *c, void *data) {
}
struct part **p2 = (struct part **)data;
void map_h_max ( struct part *p , struct cell *c , void *data ) {
if (p->h < (*p2)->h) *p2 = p;
}
struct part **p2 = (struct part **)data;
if ( p->h > (*p2)->h )
*p2 = p;
void map_h_max(struct part *p, struct cell *c, void *data) {
}
struct part **p2 = (struct part **)data;
if (p->h > (*p2)->h) *p2 = p;
}
/**
* @brief Mapping function for neighbour count.
*/
void map_icount ( struct part *p , struct cell *c , void *data ) {
void map_icount(struct part *p, struct cell *c, void *data) {
// int *count = (int *)data;
// printf( "%i\n" , p->icount );
// int *count = (int *)data;
// *count += p->icount;
}
// printf( "%i\n" , p->icount );
// *count += p->icount;
}
/**
* @brief Mapping function to print the particle position.
*/
void map_dump ( struct part *p , struct cell *c , void *data ) {
double *shift = (double *)data;
void map_dump(struct part *p, struct cell *c, void *data) {
printf( "%g\t%g\t%g\n" , p->x[0]-shift[0] , p->x[1]-shift[1] , p->x[2]-shift[2] );
}
double *shift = (double *)data;
printf("%g\t%g\t%g\n", p->x[0] - shift[0], p->x[1] - shift[1],
p->x[2] - shift[2]);
}
/**
* @brief Compute the average number of pairs per particle using
......@@ -261,713 +240,709 @@ void map_dump ( struct part *p , struct cell *c , void *data ) {
* @param periodic Periodic boundary conditions flag.
*/
void pairs_n2 ( double *dim , struct part *__restrict__ parts , int N , int periodic ) {
int i, j, k, count = 0;
// int mj, mk;
// double maxratio = 1.0;
double r2, dx[3], rho = 0.0;
double rho_max = 0.0, rho_min = 100;
/* Loop over all particle pairs. */
for ( j = 0 ; j < N ; j++ ) {
if ( j % 1000 == 0 ) {
printf( "pairs_n2: j=%i.\n" , j );
fflush(stdout);
}
for ( k = j+1 ; k < N ; k++ ) {
for ( i = 0 ; i < 3 ; i++ ) {
dx[i] = parts[j].x[i] - parts[k].x[i];
if ( periodic ) {
if ( dx[i] < -dim[i]/2 )
dx[i] += dim[i];
else if ( dx[i] > dim[i]/2 )
dx[i] -= dim[i];
}
}
r2 = dx[0]*dx[0] + dx[1]*dx[1] + dx[2]*dx[2];
if ( r2 < parts[j].h*parts[j].h || r2 < parts[k].h*parts[k].h ) {
runner_iact_density( r2 , NULL , parts[j].h , parts[k].h , &parts[j] , &parts[k] );
/* if ( parts[j].h / parts[k].h > maxratio )
{
maxratio = parts[j].h / parts[k].h;
mj = j; mk = k;
}
else if ( parts[k].h / parts[j].h > maxratio )
{
maxratio = parts[k].h / parts[j].h;
mj = j; mk = k;
} */
}
}
}
/* Aggregate the results. */
for ( k = 0 ; k < N ; k++ ) {
// count += parts[k].icount;
rho += parts[k].density.wcount;
rho_min = fmin( parts[k].density.wcount , rho_min );
rho_min = fmax( parts[k].density.wcount , rho_max );
void pairs_n2(double *dim, struct part *__restrict__ parts, int N,
int periodic) {
int i, j, k, count = 0;
// int mj, mk;
// double maxratio = 1.0;
double r2, dx[3], rho = 0.0;
double rho_max = 0.0, rho_min = 100;
/* Loop over all particle pairs. */
for (j = 0; j < N; j++) {
if (j % 1000 == 0) {
printf("pairs_n2: j=%i.\n", j);
fflush(stdout);
}
for (k = j + 1; k < N; k++) {
for (i = 0; i < 3; i++) {
dx[i] = parts[j].x[i] - parts[k].x[i];
if (periodic) {
if (dx[i] < -dim[i] / 2)
dx[i] += dim[i];
else if (dx[i] > dim[i] / 2)
dx[i] -= dim[i];
}
/* Dump the result. */
printf( "pairs_n2: avg. density per part is %.3f (nr. pairs %.3f).\n" , rho/N + 32.0/3 , ((double)count)/N );
printf( "pairs_n2: densities are in [ %e , %e ].\n" , rho_min/N + 32.0/3 , rho_max/N + 32.0/3 );
/* printf( "pairs_n2: maximum ratio between parts %i [%e,%e,%e] and %i [%e,%e,%e] is %.3f/%.3f\n" ,
mj , parts[mj].x[0] , parts[mj].x[1] , parts[mj].x[2] ,
mk , parts[mk].x[0] , parts[mk].x[1] , parts[mk].x[2] ,
parts[mj].h , parts[mk].h ); fflush(stdout); */
fflush(stdout);
}
r2 = dx[0] * dx[0] + dx[1] * dx[1] + dx[2] * dx[2];
if (r2 < parts[j].h * parts[j].h || r2 < parts[k].h * parts[k].h) {
runner_iact_density(r2, NULL, parts[j].h, parts[k].h, &parts[j],
&parts[k]);
/* if ( parts[j].h / parts[k].h > maxratio )
{
maxratio = parts[j].h / parts[k].h;
mj = j; mk = k;
}
else if ( parts[k].h / parts[j].h > maxratio )
{
maxratio = parts[k].h / parts[j].h;
mj = j; mk = k;
} */
}
}
}
/* Aggregate the results. */
for (k = 0; k < N; k++) {
// count += parts[k].icount;
rho += parts[k].density.wcount;
rho_min = fmin(parts[k].density.wcount, rho_min);
rho_min = fmax(parts[k].density.wcount, rho_max);
}
void pairs_single_density ( double *dim , long long int pid , struct part *__restrict__ parts , int N , int periodic ) {
int i, k;
// int mj, mk;
// double maxratio = 1.0;
double r2, dx[3];
float fdx[3];
struct part p;
// double ih = 12.0/6.25;
/* Find "our" part. */
for ( k = 0 ; k < N && parts[k].id != pid ; k++ );
if ( k == N )
error( "Part not found." );
p = parts[k];
printf( "pairs_single: part[%i].id == %lli.\n" , k , pid );
p.rho = 0.0;
p.density.wcount = 0.0;
// p.icount = 0;
p.rho_dh = 0.0;
/* Loop over all particle pairs. */
for ( k = 0 ; k < N ; k++ ) {
if ( parts[k].id == p.id )
continue;
for ( i = 0 ; i < 3 ; i++ ) {
dx[i] = p.x[i] - parts[k].x[i];
if ( periodic ) {
if ( dx[i] < -dim[i]/2 )
dx[i] += dim[i];
else if ( dx[i] > dim[i]/2 )
dx[i] -= dim[i];
}
fdx[i] = dx[i];
}
r2 = fdx[0]*fdx[0] + fdx[1]*fdx[1] + fdx[2]*fdx[2];
if ( r2 < p.h*p.h ) {
runner_iact_nonsym_density( r2 , fdx , p.h , parts[k].h , &p , &parts[k] );
/* printf( "pairs_simple: interacting particles %lli [%i,%i,%i] and %lli [%i,%i,%i], r=%e.\n" ,
pid , (int)(p.x[0]*ih) , (int)(p.x[1]*ih) , (int)(p.x[2]*ih) ,
parts[k].id , (int)(parts[k].x[0]*ih) , (int)(parts[k].x[1]*ih) , (int)(parts[k].x[2]*ih) ,
sqrtf(r2) ); */
}
}
/* Dump the result. */
printf( "pairs_single: wcount of part %lli (h=%e) is %f.\n" , p.id , p.h , p.density.wcount + 32.0/3 );
fflush(stdout);
/* Dump the result. */
printf("pairs_n2: avg. density per part is %.3f (nr. pairs %.3f).\n",
rho / N + 32.0 / 3, ((double)count) / N);
printf("pairs_n2: densities are in [ %e , %e ].\n", rho_min / N + 32.0 / 3,
rho_max / N + 32.0 / 3);
/* printf( "pairs_n2: maximum ratio between parts %i [%e,%e,%e] and %i
[%e,%e,%e] is %.3f/%.3f\n" ,
mj , parts[mj].x[0] , parts[mj].x[1] , parts[mj].x[2] ,
mk , parts[mk].x[0] , parts[mk].x[1] , parts[mk].x[2] ,
parts[mj].h , parts[mk].h ); fflush(stdout); */
fflush(stdout);
}
void pairs_single_density(double *dim, long long int pid,
struct part *__restrict__ parts, int N,
int periodic) {
int i, k;
// int mj, mk;
// double maxratio = 1.0;
double r2, dx[3];
float fdx[3];
struct part p;
// double ih = 12.0/6.25;
/* Find "our" part. */
for (k = 0; k < N && parts[k].id != pid; k++)
;
if (k == N) error("Part not found.");
p = parts[k];
printf("pairs_single: part[%i].id == %lli.\n", k, pid);
p.rho = 0.0;
p.density.wcount = 0.0;
// p.icount = 0;
p.rho_dh = 0.0;
/* Loop over all particle pairs. */
for (k = 0; k < N; k++) {
if (parts[k].id == p.id) continue;
for (i = 0; i < 3; i++) {
dx[i] = p.x[i] - parts[k].x[i];
if (periodic) {
if (dx[i] < -dim[i] / 2)
dx[i] += dim[i];
else if (dx[i] > dim[i] / 2)
dx[i] -= dim[i];
}
fdx[i] = dx[i];
}
r2 = fdx[0] * fdx[0] + fdx[1] * fdx[1] + fdx[2] * fdx[2];
if (r2 < p.h * p.h) {
runner_iact_nonsym_density(r2, fdx, p.h, parts[k].h, &p, &parts[k]);
/* printf( "pairs_simple: interacting particles %lli [%i,%i,%i] and %lli
[%i,%i,%i], r=%e.\n" ,
pid , (int)(p.x[0]*ih) , (int)(p.x[1]*ih) , (int)(p.x[2]*ih) ,
parts[k].id , (int)(parts[k].x[0]*ih) , (int)(parts[k].x[1]*ih) ,
(int)(parts[k].x[2]*ih) ,
sqrtf(r2) ); */
}
}
/* Dump the result. */
printf("pairs_single: wcount of part %lli (h=%e) is %f.\n", p.id, p.h,
p.density.wcount + 32.0 / 3);
fflush(stdout);
}
void pairs_single_grav ( double *dim , long long int pid , struct gpart *__restrict__ parts , int N , int periodic ) {
int i, k;
// int mj, mk;
// double maxratio = 1.0;
double r2, dx[3];
float fdx[3], a[3] = { 0.0 , 0.0 , 0.0 }, aabs[3] = { 0.0 , 0.0 , 0.0 };
struct gpart pi, pj;
// double ih = 12.0/6.25;
/* Find "our" part. */
for ( k = 0 ; k < N ; k++ )
if ( ( parts[k].id > 0 && parts[k].part->id == pid ) || parts[k].id == -pid )
break;
if ( k == N )
error( "Part not found." );
pi = parts[k];
pi.a[0] = 0.0f; pi.a[1] = 0.0f; pi.a[2] = 0.0f;
/* Loop over all particle pairs. */
for ( k = 0 ; k < N ; k++ ) {
if ( parts[k].id == pi.id )
continue;
pj = parts[k];
for ( i = 0 ; i < 3 ; i++ ) {
dx[i] = pi.x[i] - pj.x[i];
if ( periodic ) {
if ( dx[i] < -dim[i]/2 )
dx[i] += dim[i];
else if ( dx[i] > dim[i]/2 )
dx[i] -= dim[i];
}
fdx[i] = dx[i];
}
r2 = fdx[0]*fdx[0] + fdx[1]*fdx[1] + fdx[2]*fdx[2];
runner_iact_grav( r2 , fdx , &pi , &pj );
a[0] += pi.a[0]; a[1] += pi.a[1]; a[2] += pi.a[2];
aabs[0] += fabsf( pi.a[0] ); aabs[1] += fabsf( pi.a[1] ); aabs[2] += fabsf( pi.a[2] );
pi.a[0] = 0.0f; pi.a[1] = 0.0f; pi.a[2] = 0.0f;
}
/* Dump the result. */
message( "acceleration on gpart %lli is a=[ %e %e %e ], |a|=[ %.2e %.2e %.2e ].\n" , pi.part->id , a[0] , a[1] , a[2] , aabs[0] , aabs[1] , aabs[2] );
void pairs_single_grav(double *dim, long long int pid,
struct gpart *__restrict__ parts, int N, int periodic) {
int i, k;
// int mj, mk;
// double maxratio = 1.0;
double r2, dx[3];
float fdx[3], a[3] = {0.0, 0.0, 0.0}, aabs[3] = {0.0, 0.0, 0.0};
struct gpart pi, pj;
// double ih = 12.0/6.25;
/* Find "our" part. */
for (k = 0; k < N; k++)
if ((parts[k].id > 0 && parts[k].part->id == pid) || parts[k].id == -pid)
break;
if (k == N) error("Part not found.");
pi = parts[k];
pi.a[0] = 0.0f;
pi.a[1] = 0.0f;
pi.a[2] = 0.0f;
/* Loop over all particle pairs. */
for (k = 0; k < N; k++) {
if (parts[k].id == pi.id) continue;
pj = parts[k];
for (i = 0; i < 3; i++) {
dx[i] = pi.x[i] - pj.x[i];
if (periodic) {
if (dx[i] < -dim[i] / 2)
dx[i] += dim[i];
else if (dx[i] > dim[i] / 2)
dx[i] -= dim[i];
}
fdx[i] = dx[i];
}
r2 = fdx[0] * fdx[0] + fdx[1] * fdx[1] + fdx[2] * fdx[2];
runner_iact_grav(r2, fdx, &pi, &pj);
a[0] += pi.a[0];
a[1] += pi.a[1];
a[2] += pi.a[2];
aabs[0] += fabsf(pi.a[0]);
aabs[1] += fabsf(pi.a[1]);
aabs[2] += fabsf(pi.a[2]);
pi.a[0] = 0.0f;
pi.a[1] = 0.0f;
pi.a[2] = 0.0f;
}
/* Dump the result. */
message(
"acceleration on gpart %lli is a=[ %e %e %e ], |a|=[ %.2e %.2e %.2e ].\n",
pi.part->id, a[0], a[1], a[2], aabs[0], aabs[1], aabs[2]);
}
/**
* @brief Test the kernel function by dumping it in the interval [0,1].
*
* @param N number of intervals in [0,1].
*/
void kernel_dump ( int N ) {
int k;
float x, w, dw_dx;
float x4[4] = {0.0f,0.0f,0.0f,0.0f};
float w4[4] = {0.0f,0.0f,0.0f,0.0f};
// float dw_dx4[4] __attribute__ ((aligned (16)));
for ( k = 0 ; k <= N ; k++ ) {
x = ((float)k) / N;
x4[3] = x4[2]; x4[2] = x4[1]; x4[1] = x4[0]; x4[0] = x;
kernel_deval( x , &w , &dw_dx );
// kernel_deval_vec( (vector *)x4 , (vector *)w4 , (vector *)dw_dx4 );
printf( " %e %e %e %e %e %e %e\n" , x , w , dw_dx , w4[0] , w4[1] , w4[2] , w4[3] );
}
}
void kernel_dump(int N) {
int k;
float x, w, dw_dx;
float x4[4] = {0.0f, 0.0f, 0.0f, 0.0f};
float w4[4] = {0.0f, 0.0f, 0.0f, 0.0f};
// float dw_dx4[4] __attribute__ ((aligned (16)));
for (k = 0; k <= N; k++) {
x = ((float)k) / N;
x4[3] = x4[2];
x4[2] = x4[1];
x4[1] = x4[0];
x4[0] = x;
kernel_deval(x, &w, &dw_dx);
// kernel_deval_vec( (vector *)x4 , (vector *)w4 , (vector *)dw_dx4 );
printf(" %e %e %e %e %e %e %e\n", x, w, dw_dx, w4[0], w4[1], w4[2], w4[3]);
}
}
float gadget ( float r ) {
float fac, h_inv, u, r2 = r*r;
if ( r >= const_epsilon )
float gadget(float r) {
float fac, h_inv, u, r2 = r * r;
if (r >= const_epsilon)
fac = 1.0f / (r2 * r);
else {
h_inv = 1. / const_epsilon;
u = r * h_inv;
if ( u < 0.5 )
if (u < 0.5)
fac = const_iepsilon3 * (10.666666666667 + u * u * (32.0 * u - 38.4));
else
fac = const_iepsilon3 * (21.333333333333 - 48.0 * u +
38.4 * u * u - 10.666666666667 * u * u * u - 0.066666666667 / (u * u * u));
fac = const_iepsilon3 *
(21.333333333333 - 48.0 * u + 38.4 * u * u -
10.666666666667 * u * u * u - 0.066666666667 / (u * u * u));
}
return const_G * fac;
}
void gravity_dump ( float r_max , int N ) {
int k;
float x, w;
float x4[4] = {0.0f,0.0f,0.0f,0.0f};
float w4[4] = {0.0f,0.0f,0.0f,0.0f};
// float dw_dx4[4] __attribute__ ((aligned (16)));
for ( k = 1 ; k <= N ; k++ ) {
x = (r_max * k) / N;
x4[3] = x4[2]; x4[2] = x4[1]; x4[1] = x4[0]; x4[0] = x;
kernel_grav_eval( x , &w );
w *= const_G / ( x*x*x );
// blender_deval_vec( (vector *)x4 , (vector *)w4 , (vector *)dw_dx4 );
printf( " %.16e %.16e %.16e %.16e %.16e %.16e %.16e\n" , x , w*x , w4[0] , w4[1] , w4[2] , w4[3] , gadget(x)*x );
}
}
void gravity_dump(float r_max, int N) {
int k;
float x, w;
float x4[4] = {0.0f, 0.0f, 0.0f, 0.0f};
float w4[4] = {0.0f, 0.0f, 0.0f, 0.0f};
// float dw_dx4[4] __attribute__ ((aligned (16)));
for (k = 1; k <= N; k++) {
x = (r_max * k) / N;
x4[3] = x4[2];
x4[2] = x4[1];
x4[1] = x4[0];
x4[0] = x;
kernel_grav_eval(x, &w);
w *= const_G / (x * x * x);
// blender_deval_vec( (vector *)x4 , (vector *)w4 , (vector *)dw_dx4 );
printf(" %.16e %.16e %.16e %.16e %.16e %.16e %.16e\n", x, w * x, w4[0],
w4[1], w4[2], w4[3], gadget(x) * x);
}
}
/**
* @brief Test the density function by dumping it for two random parts.
*
* @param N number of intervals in [0,1].
*/
void density_dump ( int N ) {
int k;
float r2[4] = {0.0f,0.0f,0.0f,0.0f}, hi[4], hj[4];
struct part *pi[4], *pj[4], Pi[4], Pj[4];
/* Init the interaction parameters. */
for ( k = 0 ; k < 4 ; k++ ) {
Pi[k].mass = 1.0f; Pi[k].rho = 0.0f; Pi[k].density.wcount = 0.0f;
Pj[k].mass = 1.0f; Pj[k].rho = 0.0f; Pj[k].density.wcount = 0.0f;
hi[k] = 1.0;
hj[k] = 1.0;
pi[k] = &Pi[k];
pj[k] = &Pj[k];
}
for ( k = 0 ; k <= N ; k++ ) {
r2[3] = r2[2]; r2[2] = r2[1]; r2[1] = r2[0];
r2[0] = ((float)k) / N;
Pi[0].density.wcount = 0; Pj[0].density.wcount = 0;
runner_iact_density( r2[0] , NULL , hi[0] , hj[0] , &Pi[0] , &Pj[0] );
printf( " %e %e %e" , r2[0] , Pi[0].density.wcount , Pj[0].density.wcount );
Pi[0].density.wcount = 0; Pj[0].density.wcount = 0;
Pi[1].density.wcount = 0; Pj[1].density.wcount = 0;
Pi[2].density.wcount = 0; Pj[2].density.wcount = 0;
Pi[3].density.wcount = 0; Pj[3].density.wcount = 0;
runner_iact_vec_density( r2 , NULL , hi , hj , pi , pj );
printf( " %e %e %e %e\n" , Pi[0].density.wcount , Pi[1].density.wcount , Pi[2].density.wcount , Pi[3].density.wcount );
}
void density_dump(int N) {
int k;
float r2[4] = {0.0f, 0.0f, 0.0f, 0.0f}, hi[4], hj[4];
struct part *pi[4], *pj[4], Pi[4], Pj[4];
/* Init the interaction parameters. */
for (k = 0; k < 4; k++) {
Pi[k].mass = 1.0f;
Pi[k].rho = 0.0f;
Pi[k].density.wcount = 0.0f;
Pj[k].mass = 1.0f;
Pj[k].rho = 0.0f;
Pj[k].density.wcount = 0.0f;
hi[k] = 1.0;
hj[k] = 1.0;
pi[k] = &Pi[k];
pj[k] = &Pj[k];
}
}
for (k = 0; k <= N; k++) {
r2[3] = r2[2];
r2[2] = r2[1];
r2[1] = r2[0];
r2[0] = ((float)k) / N;
Pi[0].density.wcount = 0;
Pj[0].density.wcount = 0;
runner_iact_density(r2[0], NULL, hi[0], hj[0], &Pi[0], &Pj[0]);
printf(" %e %e %e", r2[0], Pi[0].density.wcount, Pj[0].density.wcount);
Pi[0].density.wcount = 0;
Pj[0].density.wcount = 0;
Pi[1].density.wcount = 0;
Pj[1].density.wcount = 0;
Pi[2].density.wcount = 0;
Pj[2].density.wcount = 0;
Pi[3].density.wcount = 0;
Pj[3].density.wcount = 0;
runner_iact_vec_density(r2, NULL, hi, hj, pi, pj);
printf(" %e %e %e %e\n", Pi[0].density.wcount, Pi[1].density.wcount,
Pi[2].density.wcount, Pi[3].density.wcount);
}
}
/**
* Factorize a given integer, attempts to keep larger pair of factors.
*/
void factor( int value, int *f1, int *f2 ) {
int j;
int i;
j = (int) sqrt( value );
for ( i = j; i > 0; i-- ) {
if ( ( value % i ) == 0 ) {
*f1 = i;
*f2 = value / i;
break;
}
}
void factor(int value, int *f1, int *f2) {
int j;
int i;
j = (int)sqrt(value);
for (i = j; i > 0; i--) {
if ((value % i) == 0) {
*f1 = i;
*f2 = value / i;
break;
}
}
}
/**
* @brief Main routine that loads a few particles and generates some output.
*
*/
int main ( int argc , char *argv[] ) {
int c, icount, j, k, N = -1, periodic = 1;
int nr_threads = 1, nr_queues = -1, runs = INT_MAX;
int data[2];
double dim[3] = { 1.0 , 1.0 , 1.0 }, shift[3] = { 0.0 , 0.0 , 0.0 };
double h_max = -1.0 , scaling = 1.0;
double clock = DBL_MAX;
struct part *parts = NULL;
struct space s;
struct engine e;
struct UnitSystem us;
char ICfileName[200] = "";
float dt_max = 0.0f;
ticks tic;
int nr_nodes = 1, myrank = 0, grid[3] = { 1 , 1 , 1 };
/* Choke on FP-exceptions. */
// feenableexcept( FE_DIVBYZERO | FE_INVALID | FE_OVERFLOW );
int main(int argc, char *argv[]) {
int c, icount, j, k, N = -1, periodic = 1;
int nr_threads = 1, nr_queues = -1, runs = INT_MAX;
int data[2];
double dim[3] = {1.0, 1.0, 1.0}, shift[3] = {0.0, 0.0, 0.0};
double h_max = -1.0, scaling = 1.0;
double clock = DBL_MAX;
struct part *parts = NULL;
struct space s;
struct engine e;
struct UnitSystem us;
char ICfileName[200] = "";
float dt_max = 0.0f;
ticks tic;
int nr_nodes = 1, myrank = 0, grid[3] = {1, 1, 1};
/* Choke on FP-exceptions. */
// feenableexcept( FE_DIVBYZERO | FE_INVALID | FE_OVERFLOW );
#ifdef WITH_MPI
/* Start by initializing MPI. */
int res, prov;
if ( ( res = MPI_Init_thread( &argc , &argv , MPI_THREAD_MULTIPLE , &prov ) ) != MPI_SUCCESS )
error( "Call to MPI_Init failed with error %i." , res );
if ( prov != MPI_THREAD_MULTIPLE )
error( "MPI does not provide the level of threading required (MPI_THREAD_MULTIPLE)." );
if ( ( res = MPI_Comm_size( MPI_COMM_WORLD , &nr_nodes ) != MPI_SUCCESS ) )
error( "MPI_Comm_size failed with error %i." , res );
if ( ( res = MPI_Comm_rank( MPI_COMM_WORLD , &myrank ) ) != MPI_SUCCESS )
error( "Call to MPI_Comm_rank failed with error %i." , res );
if ( ( res = MPI_Comm_set_errhandler( MPI_COMM_WORLD , MPI_ERRORS_RETURN ) ) != MPI_SUCCESS )
error( "Call to MPI_Comm_set_errhandler failed with error %i." , res );
if ( myrank == 0 )
message( "MPI is up and running with %i node(s)." , nr_nodes );
fflush(stdout);
/* Set a default grid so that grid[0]*grid[1]*grid[2] == nr_nodes. */
factor( nr_nodes, &grid[0], &grid[1] );
factor( nr_nodes / grid[1], &grid[0], &grid[2] );
factor( grid[0] * grid[1], &grid[1], &grid[0] );
/* Start by initializing MPI. */
int res, prov;
if ((res = MPI_Init_thread(&argc, &argv, MPI_THREAD_MULTIPLE, &prov)) !=
MPI_SUCCESS)
error("Call to MPI_Init failed with error %i.", res);
if (prov != MPI_THREAD_MULTIPLE)
error(
"MPI does not provide the level of threading required "
"(MPI_THREAD_MULTIPLE).");
if ((res = MPI_Comm_size(MPI_COMM_WORLD, &nr_nodes) != MPI_SUCCESS))
error("MPI_Comm_size failed with error %i.", res);
if ((res = MPI_Comm_rank(MPI_COMM_WORLD, &myrank)) != MPI_SUCCESS)
error("Call to MPI_Comm_rank failed with error %i.", res);
if ((res = MPI_Comm_set_errhandler(MPI_COMM_WORLD, MPI_ERRORS_RETURN)) !=
MPI_SUCCESS)
error("Call to MPI_Comm_set_errhandler failed with error %i.", res);
if (myrank == 0) message("MPI is up and running with %i node(s).", nr_nodes);
fflush(stdout);
/* Set a default grid so that grid[0]*grid[1]*grid[2] == nr_nodes. */
factor(nr_nodes, &grid[0], &grid[1]);
factor(nr_nodes / grid[1], &grid[0], &grid[2]);
factor(grid[0] * grid[1], &grid[1], &grid[0]);
#endif
/* Greeting message */
if ( myrank == 0 )
greetings( );
/* Init the space. */
bzero( &s , sizeof(struct space) );
/* Parse the options */
while ( ( c = getopt( argc , argv , "a:c:d:f:g:m:q:r:s:t:w:z:" ) ) != -1 )
switch( c )
{
case 'a':
if ( sscanf( optarg , "%lf" , &scaling ) != 1 )
error( "Error parsing cutoff scaling." );
if ( myrank == 0 )
message( "scaling cutoff by %.3f." , scaling ); fflush(stdout);
break;
case 'c':
if ( sscanf( optarg , "%lf" , &clock ) != 1 )
error( "Error parsing clock." );
if ( myrank == 0 )
message( "clock set to %.3e." , clock ); fflush(stdout);
break;
case 'd':
if ( sscanf( optarg , "%f" , &dt_max ) != 1 )
error( "Error parsing timestep." );
if ( myrank == 0 )
message( "dt set to %e." , dt_max ); fflush(stdout);
break;
case 'f':
if( !strcpy(ICfileName, optarg))
error("Error parsing IC file name.");
break;
case 'g':
if ( sscanf( optarg , "%i %i %i" , &grid[0] , &grid[1] , &grid[2] ) != 3 )
error( "Error parsing grid." );
break;
case 'm':
if ( sscanf( optarg , "%lf" , &h_max ) != 1 )
error( "Error parsing h_max." );
if ( myrank == 0 )
message( "maximum h set to %e." , h_max ); fflush(stdout);
break;
case 'q':
if ( sscanf( optarg , "%d" , &nr_queues ) != 1 )
error( "Error parsing number of queues." );
break;
case 'r':
if ( sscanf( optarg , "%d" , &runs ) != 1 )
error( "Error parsing number of runs." );
break;
case 's':
if ( sscanf( optarg , "%lf %lf %lf" , &shift[0] , &shift[1] , &shift[2] ) != 3 )
error( "Error parsing shift." );
if ( myrank == 0 )
message( "will shift parts by [ %.3f %.3f %.3f ]." , shift[0] , shift[1] , shift[2] );
break;
case 't':
if ( sscanf( optarg , "%d" , &nr_threads ) != 1 )
error( "Error parsing number of threads." );
break;
case 'w':
if ( sscanf( optarg , "%d" , &space_subsize ) != 1 )
error( "Error parsing sub size." );
if ( myrank == 0 )
message( "sub size set to %i." , space_subsize );
break;
case 'z':
if ( sscanf( optarg , "%d" , &space_splitsize ) != 1 )
error( "Error parsing split size." );
if ( myrank == 0 )
message( "split size set to %i." , space_splitsize );
break;
case '?':
error( "Unknown option." );
break;
}
#if defined( WITH_MPI )
if ( myrank == 0 )
message( "Running with %i thread(s) per node.", nr_threads);
/* Greeting message */
if (myrank == 0) greetings();
/* Init the space. */
bzero(&s, sizeof(struct space));
/* Parse the options */
while ((c = getopt(argc, argv, "a:c:d:f:g:m:q:r:s:t:w:z:")) != -1)
switch (c) {
case 'a':
if (sscanf(optarg, "%lf", &scaling) != 1)
error("Error parsing cutoff scaling.");
if (myrank == 0) message("scaling cutoff by %.3f.", scaling);
fflush(stdout);
break;
case 'c':
if (sscanf(optarg, "%lf", &clock) != 1) error("Error parsing clock.");
if (myrank == 0) message("clock set to %.3e.", clock);
fflush(stdout);
break;
case 'd':
if (sscanf(optarg, "%f", &dt_max) != 1)
error("Error parsing timestep.");
if (myrank == 0) message("dt set to %e.", dt_max);
fflush(stdout);
break;
case 'f':
if (!strcpy(ICfileName, optarg)) error("Error parsing IC file name.");
break;
case 'g':
if (sscanf(optarg, "%i %i %i", &grid[0], &grid[1], &grid[2]) != 3)
error("Error parsing grid.");
break;
case 'm':
if (sscanf(optarg, "%lf", &h_max) != 1) error("Error parsing h_max.");
if (myrank == 0) message("maximum h set to %e.", h_max);
fflush(stdout);
break;
case 'q':
if (sscanf(optarg, "%d", &nr_queues) != 1)
error("Error parsing number of queues.");
break;
case 'r':
if (sscanf(optarg, "%d", &runs) != 1)
error("Error parsing number of runs.");
break;
case 's':
if (sscanf(optarg, "%lf %lf %lf", &shift[0], &shift[1], &shift[2]) != 3)
error("Error parsing shift.");
if (myrank == 0)
message("will shift parts by [ %.3f %.3f %.3f ].", shift[0], shift[1],
shift[2]);
break;
case 't':
if (sscanf(optarg, "%d", &nr_threads) != 1)
error("Error parsing number of threads.");
break;
case 'w':
if (sscanf(optarg, "%d", &space_subsize) != 1)
error("Error parsing sub size.");
if (myrank == 0) message("sub size set to %i.", space_subsize);
break;
case 'z':
if (sscanf(optarg, "%d", &space_splitsize) != 1)
error("Error parsing split size.");
if (myrank == 0) message("split size set to %i.", space_splitsize);
break;
case '?':
error("Unknown option.");
break;
}
#if defined(WITH_MPI)
if (myrank == 0) message("Running with %i thread(s) per node.", nr_threads);
#else
if ( myrank == 0 )
message( "Running with %i thread(s).", nr_threads);
if (myrank == 0) message("Running with %i thread(s).", nr_threads);
#endif
#if defined( WITH_MPI )
if ( myrank == 0 )
message( "grid set to [ %i %i %i ]." , grid[0] , grid[1] , grid[2] ); fflush(stdout);
#if defined(WITH_MPI)
if (myrank == 0)
message("grid set to [ %i %i %i ].", grid[0], grid[1], grid[2]);
fflush(stdout);
#endif
/* How large are the parts? */
if ( myrank == 0 ) {
message( "sizeof(struct part) is %li bytes." , (long int)sizeof( struct part ));
message( "sizeof(struct gpart) is %li bytes." , (long int)sizeof( struct gpart ));
}
/* How large are the parts? */
if (myrank == 0) {
message("sizeof(struct part) is %li bytes.", (long int)sizeof(struct part));
message("sizeof(struct gpart) is %li bytes.",
(long int)sizeof(struct gpart));
}
/* Initilaize unit system */
initUnitSystem(&us);
if ( myrank == 0 )
{
message( "Unit system: U_M = %e g.", us.UnitMass_in_cgs );
message( "Unit system: U_L = %e cm.", us.UnitLength_in_cgs );
message( "Unit system: U_t = %e s.", us.UnitTime_in_cgs );
message( "Unit system: U_I = %e A.", us.UnitCurrent_in_cgs );
message( "Unit system: U_T = %e K.", us.UnitTemperature_in_cgs );
message( "Density units: %e a^%f h^%f.", conversionFactor(&us, UNIT_CONV_DENSITY), aFactor(&us, UNIT_CONV_DENSITY), hFactor(&us, UNIT_CONV_DENSITY) );
message( "Entropy units: %e a^%f h^%f.", conversionFactor(&us, UNIT_CONV_ENTROPY), aFactor(&us, UNIT_CONV_ENTROPY), hFactor(&us, UNIT_CONV_ENTROPY) );
}
/* Initilaize unit system */
initUnitSystem(&us);
if (myrank == 0) {
message("Unit system: U_M = %e g.", us.UnitMass_in_cgs);
message("Unit system: U_L = %e cm.", us.UnitLength_in_cgs);
message("Unit system: U_t = %e s.", us.UnitTime_in_cgs);
message("Unit system: U_I = %e A.", us.UnitCurrent_in_cgs);
message("Unit system: U_T = %e K.", us.UnitTemperature_in_cgs);
message("Density units: %e a^%f h^%f.",
conversionFactor(&us, UNIT_CONV_DENSITY),
aFactor(&us, UNIT_CONV_DENSITY), hFactor(&us, UNIT_CONV_DENSITY));
message("Entropy units: %e a^%f h^%f.",
conversionFactor(&us, UNIT_CONV_ENTROPY),
aFactor(&us, UNIT_CONV_ENTROPY), hFactor(&us, UNIT_CONV_ENTROPY));
}
/* Check whether an IC file has been provided */
if ( strcmp( ICfileName, "" ) == 0 )
error( "An IC file name must be provided via the option -f" );
/* Check whether an IC file has been provided */
if (strcmp(ICfileName, "") == 0)
error("An IC file name must be provided via the option -f");
/* Read particles and space information from (GADGET) IC */
tic = getticks();
#if defined( WITH_MPI )
#if defined( HAVE_PARALLEL_HDF5 )
read_ic_parallel( ICfileName , dim , &parts , &N , &periodic, myrank, nr_nodes, MPI_COMM_WORLD, MPI_INFO_NULL );
/* Read particles and space information from (GADGET) IC */
tic = getticks();
#if defined(WITH_MPI)
#if defined(HAVE_PARALLEL_HDF5)
read_ic_parallel(ICfileName, dim, &parts, &N, &periodic, myrank, nr_nodes,
MPI_COMM_WORLD, MPI_INFO_NULL);
#else
read_ic_serial( ICfileName , dim , &parts , &N , &periodic, myrank, nr_nodes, MPI_COMM_WORLD, MPI_INFO_NULL );
read_ic_serial(ICfileName, dim, &parts, &N, &periodic, myrank, nr_nodes,
MPI_COMM_WORLD, MPI_INFO_NULL);
#endif
#else
read_ic_single( ICfileName , dim , &parts , &N , &periodic );
read_ic_single(ICfileName, dim, &parts, &N, &periodic);
#endif
if ( myrank == 0 )
message( "reading particle properties took %.3f ms." , ((double)(getticks() - tic)) / CPU_TPS * 1000 ); fflush(stdout);
/* Apply h scaling */
if( scaling != 1.0 )
for ( k = 0 ; k < N ; k++ )
parts[k].h *= scaling;
/* Apply shift */
if(shift[0] !=0 || shift[1] !=0 || shift[2] !=0 )
for ( k = 0 ; k < N ; k++ ) {
parts[k].x[0] += shift[0];
parts[k].x[1] += shift[1];
parts[k].x[2] += shift[2];
}
if (myrank == 0)
message("reading particle properties took %.3f ms.",
((double)(getticks() - tic)) / CPU_TPS * 1000);
fflush(stdout);
/* Apply h scaling */
if (scaling != 1.0)
for (k = 0; k < N; k++) parts[k].h *= scaling;
/* Apply shift */
if (shift[0] != 0 || shift[1] != 0 || shift[2] != 0)
for (k = 0; k < N; k++) {
parts[k].x[0] += shift[0];
parts[k].x[1] += shift[1];
parts[k].x[2] += shift[2];
}
/* printParticle( parts , 10312237508790 , N );
printParticle( parts , 10312286091950 , N ); */
/* for ( k = 0 ; k < N ; k++ )
if ( parts[k].id == 10312286091950 ||
parts[k].id == 10286889371446 ||
parts[k].id == 9536045071298 ||
parts[k].id == 12726778692106 ||
parts[k].id == 9479892852626 ||
parts[k].id == 9535843125514 ||
parts[k].id == 14151507889834 ||
parts[k].id == 14144038209438 ||
parts[k].id == 14121890205050 ||
parts[k].id == 5868762382714 ||
parts[k].id == 12840527117206 ||
parts[k].id == 10292087642778 ||
parts[k].id == 9465178320650 ||
parts[k].id == 2834846537770 ||
parts[k].id == 9483000048314 ||
parts[k].id == 10247332828902 ||
parts[k].id == 10223834653674 ||
parts[k].id == 16719632108962 ||
parts[k].id == 16759192850622 ||
parts[k].id == 9483599082554 ||
parts[k].id == 10247340329226 )
parts[k] = parts[--N]; */
/* Set default number of queues. */
if ( nr_queues < 0 )
nr_queues = nr_threads;
/* Initialize the space with this data. */
tic = getticks();
space_init( &s , dim , parts , N , periodic , h_max );
if ( myrank == 0 )
message( "space_init took %.3f ms." , ((double)(getticks() - tic)) / CPU_TPS * 1000 ); fflush(stdout);
/* Set the default time step to 1.0f. */
if ( myrank == 0 )
message( "dt_max is %e." , dt_max );
/* Say a few nice things about the space we just created. */
if ( myrank == 0 ) {
message( "space dimensions are [ %.3f %.3f %.3f ]." , s.dim[0] , s.dim[1] , s.dim[2] );
message( "space %s periodic." , s.periodic ? "is" : "isn't" );
message( "highest-level cell dimensions are [ %i %i %i ]." , s.cdim[0] , s.cdim[1] , s.cdim[2] );
message( "%i parts in %i cells." , s.nr_parts , s.tot_cells );
message( "maximum depth is %d." , s.maxdepth );
// message( "cutoffs in [ %g %g ]." , s.h_min , s.h_max ); fflush(stdout);
}
/* Verify that each particle is in it's propper cell. */
if ( myrank == 0 ) {
icount = 0;
space_map_cells_pre( &s , 0 , &map_cellcheck , &icount );
message( "map_cellcheck picked up %i parts." , icount );
}
if ( myrank == 0 ) {
data[0] = s.maxdepth; data[1] = 0;
space_map_cells_pre( &s , 0 , &map_maxdepth , data );
message( "nr of cells at depth %i is %i." , data[0] , data[1] );
}
/* Dump the particle positions. */
// space_map_parts( &s , &map_dump , shift );
/* Initialize the engine with this space. */
tic = getticks();
message( "nr_nodes is %i." , nr_nodes );
engine_init( &e , &s , dt_max , nr_threads , nr_queues , nr_nodes , myrank , ENGINE_POLICY | engine_policy_steal );
if ( myrank == 0 )
message( "engine_init took %.3f ms." , ((double)(getticks() - tic)) / CPU_TPS * 1000 ); fflush(stdout);
/* Set default number of queues. */
if (nr_queues < 0) nr_queues = nr_threads;
/* Initialize the space with this data. */
tic = getticks();
space_init(&s, dim, parts, N, periodic, h_max);
if (myrank == 0)
message("space_init took %.3f ms.",
((double)(getticks() - tic)) / CPU_TPS * 1000);
fflush(stdout);
/* Set the default time step to 1.0f. */
if (myrank == 0) message("dt_max is %e.", dt_max);
/* Say a few nice things about the space we just created. */
if (myrank == 0) {
message("space dimensions are [ %.3f %.3f %.3f ].", s.dim[0], s.dim[1],
s.dim[2]);
message("space %s periodic.", s.periodic ? "is" : "isn't");
message("highest-level cell dimensions are [ %i %i %i ].", s.cdim[0],
s.cdim[1], s.cdim[2]);
message("%i parts in %i cells.", s.nr_parts, s.tot_cells);
message("maximum depth is %d.", s.maxdepth);
// message( "cutoffs in [ %g %g ]." , s.h_min , s.h_max ); fflush(stdout);
}
/* Verify that each particle is in it's propper cell. */
if (myrank == 0) {
icount = 0;
space_map_cells_pre(&s, 0, &map_cellcheck, &icount);
message("map_cellcheck picked up %i parts.", icount);
}
if (myrank == 0) {
data[0] = s.maxdepth;
data[1] = 0;
space_map_cells_pre(&s, 0, &map_maxdepth, data);
message("nr of cells at depth %i is %i.", data[0], data[1]);
}
/* Dump the particle positions. */
// space_map_parts( &s , &map_dump , shift );
/* Initialize the engine with this space. */
tic = getticks();
message("nr_nodes is %i.", nr_nodes);
engine_init(&e, &s, dt_max, nr_threads, nr_queues, nr_nodes, myrank,
ENGINE_POLICY | engine_policy_steal);
if (myrank == 0)
message("engine_init took %.3f ms.",
((double)(getticks() - tic)) / CPU_TPS * 1000);
fflush(stdout);
#ifdef WITH_MPI
/* Split the space. */
engine_split( &e , grid );
engine_redistribute ( &e );
/* Split the space. */
engine_split(&e, grid);
engine_redistribute(&e);
#endif
message("Before write !");
/* Write the state of the system as it is before starting time integration. */
tic = getticks();
#if defined( WITH_MPI )
#if defined( HAVE_PARALLEL_HDF5 )
write_output_parallel(&e, &us, myrank, nr_nodes, MPI_COMM_WORLD, MPI_INFO_NULL);
message("Before write !");
/* Write the state of the system as it is before starting time integration. */
tic = getticks();
#if defined(WITH_MPI)
#if defined(HAVE_PARALLEL_HDF5)
write_output_parallel(&e, &us, myrank, nr_nodes, MPI_COMM_WORLD,
MPI_INFO_NULL);
#else
write_output_serial(&e, &us, myrank, nr_nodes, MPI_COMM_WORLD, MPI_INFO_NULL);
write_output_serial(&e, &us, myrank, nr_nodes, MPI_COMM_WORLD, MPI_INFO_NULL);
#endif
#else
write_output_single(&e, &us);
write_output_single(&e, &us);
#endif
message( "writing particle properties took %.3f ms." , ((double)(getticks() - tic)) / CPU_TPS * 1000 ); fflush(stdout);
/* Init the runner history. */
#ifdef HIST
for ( k = 0 ; k < runner_hist_N ; k++ )
runner_hist_bins[k] = 0;
#endif
/* Inauguration speech. */
if ( runs < INT_MAX )
message( "starting for %i steps with %i threads and %i queues..." , runs , e.nr_threads , e.sched.nr_queues );
else
message( "starting for t=%.3e with %i threads and %i queues..." , clock , e.nr_threads , e.sched.nr_queues );
fflush(stdout);
/* Set a target particle. */
/* long long int pid[5];
unsigned int seed = 6178;
for ( k = 0 ; k < 5 ; k++ )
pid[k] = s.gparts[ rand_r( &seed ) % N ].part->id;
for ( k = 0 ; k < 5 ; k++ )
pairs_single_grav( dim , pid[k] , s.gparts , N , 0 ); */
/* Legend. */
if ( myrank == 0 )
printf( "# step time e_tot e_kin e_temp dt dt_step count dt_min dt_max\n" );
/* Let loose a runner on the space. */
for ( j = 0 ; j < runs && e.time < clock ; j++ ) {
/* Repartition the space amongst the nodes? */
#if defined(WITH_MPI) && defined(HAVE_METIS)
if ( j % 100 == 2 )
e.forcerepart = 1;
#endif
/* Force a rebuild for testing. */
/* if ( j % 4 == 3 )
e.forcerebuild = 1; */
// message( "starting run %i/%i (t=%.3e) with %i threads and %i queues..." , j+1 , runs , e.time , e.nr_threads , e.nr_queues ); fflush(stdout);
timers_reset( timers_mask_all );
#ifdef COUNTER
for ( k = 0 ; k < runner_counter_count ; k++ )
runner_counter[k] = 0;
#endif
/* Take a step. */
engine_step( &e );
if ( j % 100 == 0 )
{
#if defined( WITH_MPI )
#if defined( HAVE_PARALLEL_HDF5 )
write_output_parallel(&e, &us, myrank, nr_nodes, MPI_COMM_WORLD, MPI_INFO_NULL);
message("writing particle properties took %.3f ms.",
((double)(getticks() - tic)) / CPU_TPS * 1000);
fflush(stdout);
/* Init the runner history. */
#ifdef HIST
for (k = 0; k < runner_hist_N; k++) runner_hist_bins[k] = 0;
#endif
/* Inauguration speech. */
if (runs < INT_MAX)
message("starting for %i steps with %i threads and %i queues...", runs,
e.nr_threads, e.sched.nr_queues);
else
message("starting for t=%.3e with %i threads and %i queues...", clock,
e.nr_threads, e.sched.nr_queues);
fflush(stdout);
/* Legend. */
if (myrank == 0)
printf("# step time e_tot e_kin e_temp dt dt_step count dt_min dt_max\n");
/* Let loose a runner on the space. */
for (j = 0; j < runs && e.time < clock; j++) {
/* Repartition the space amongst the nodes? */
#if defined(WITH_MPI) && defined(HAVE_METIS)
if (j % 100 == 2) e.forcerepart = 1;
#endif
timers_reset(timers_mask_all);
#ifdef COUNTER
for (k = 0; k < runner_counter_count; k++) runner_counter[k] = 0;
#endif
/* Take a step. */
engine_step(&e);
if (j % 100 == 0) {
#if defined(WITH_MPI)
#if defined(HAVE_PARALLEL_HDF5)
write_output_parallel(&e, &us, myrank, nr_nodes, MPI_COMM_WORLD,
MPI_INFO_NULL);
#else
write_output_serial(&e, &us, myrank, nr_nodes, MPI_COMM_WORLD, MPI_INFO_NULL);
write_output_serial(&e, &us, myrank, nr_nodes, MPI_COMM_WORLD,
MPI_INFO_NULL);
#endif
#else
write_output_single(&e, &us);
write_output_single(&e, &us);
#endif
}
}
/* Dump a line of agregate output. */
if ( myrank == 0 ) {
printf( "%i %e %.16e %.16e %.16e %.3e %.3e %i %.3e %.3e" ,
j , e.time ,
e.ekin+e.epot , e.ekin , e.epot ,
e.dt , e.dt_step , e.count_step ,
e.dt_min , e.dt_max );
for ( k = 0 ; k < timer_count ; k++ )
printf( " %.3f" , ((double)timers[k])/CPU_TPS*1000 );
printf( "\n" ); fflush(stdout);
}
/* for ( k = 0 ; k < 5 ; k++ )
printgParticle( s.gparts , pid[k] , N ); */
/* Dump a line of agregate output. */
if (myrank == 0) {
printf("%i %e %.16e %.16e %.16e %.3e %.3e %i %.3e %.3e", j, e.time,
e.ekin + e.epot, e.ekin, e.epot, e.dt, e.dt_step, e.count_step,
e.dt_min, e.dt_max);
for (k = 0; k < timer_count; k++)
printf(" %.3f", ((double)timers[k]) / CPU_TPS * 1000);
printf("\n");
fflush(stdout);
}
/* Print the values of the runner histogram. */
/* for ( k = 0 ; k < 5 ; k++ )
printgParticle( s.gparts , pid[k] , N ); */
}
/* Print the values of the runner histogram. */
#ifdef HIST
printf( "main: runner histogram data:\n" );
for ( k = 0 ; k < runner_hist_N ; k++ )
printf( " %e %e %e\n" ,
runner_hist_a + k * (runner_hist_b - runner_hist_a) / runner_hist_N ,
runner_hist_a + (k + 1) * (runner_hist_b - runner_hist_a) / runner_hist_N ,
(double)runner_hist_bins[k] );
printf("main: runner histogram data:\n");
for (k = 0; k < runner_hist_N; k++)
printf(" %e %e %e\n",
runner_hist_a + k * (runner_hist_b - runner_hist_a) / runner_hist_N,
runner_hist_a +
(k + 1) * (runner_hist_b - runner_hist_a) / runner_hist_N,
(double)runner_hist_bins[k]);
#endif
/* Loop over the parts directly. */
// for ( k = 0 ; k < N ; k++ )
// printf( " %i %e %e\n" , s.parts[k].id , s.parts[k].count , s.parts[k].count_dh );
/* Dump the task data. */
/* #ifdef WITH_MPI
for ( j = 0 ; j < nr_nodes ; j++ ) {
MPI_Barrier( MPI_COMM_WORLD );
if ( j == myrank ) {
printf( " %03i 0 0 0 0 %lli 0 0 0 0\n" , myrank , e.tic_step );
for ( k = 0 ; k < e.sched.nr_tasks ; k++ )
if ( !e.sched.tasks[k].skip && !e.sched.tasks[k].implicit )
printf( " %03i %i %i %i %i %lli %lli %i %i %i\n" ,
myrank ,
e.sched.tasks[k].rid , e.sched.tasks[k].type , e.sched.tasks[k].subtype ,
(e.sched.tasks[k].cj == NULL) , e.sched.tasks[k].tic , e.sched.tasks[k].toc ,
e.sched.tasks[k].ci->count , (e.sched.tasks[k].cj!=NULL)?e.sched.tasks[k].cj->count:0 , e.sched.tasks[k].flags);
fflush(stdout);
sleep(1);
}
}
#else
for ( k = 0 ; k < e.sched.nr_tasks ; k++ )
if ( !e.sched.tasks[k].skip && !e.sched.tasks[k].implicit )
printf( " %i %i %i %i %lli %lli %i %i\n" ,
e.sched.tasks[k].rid , e.sched.tasks[k].type , e.sched.tasks[k].subtype ,
(e.sched.tasks[k].cj == NULL) , e.sched.tasks[k].tic , e.sched.tasks[k].toc ,
e.sched.tasks[k].ci->count ,
(e.sched.tasks[k].cj==NULL)?0:e.sched.tasks[k].cj->count );
#endif */
/* Write final output. */
#if defined( WITH_MPI )
#if defined( HAVE_PARALLEL_HDF5 )
write_output_parallel(&e, &us, myrank, nr_nodes, MPI_COMM_WORLD, MPI_INFO_NULL);
/* Dump the task data. */
/* #ifdef WITH_MPI
for ( j = 0 ; j < nr_nodes ; j++ ) {
MPI_Barrier( MPI_COMM_WORLD );
if ( j == myrank ) {
printf( " %03i 0 0 0 0 %lli 0 0 0 0\n" , myrank , e.tic_step );
for ( k = 0 ; k < e.sched.nr_tasks ; k++ )
if ( !e.sched.tasks[k].skip && !e.sched.tasks[k].implicit )
printf( " %03i %i %i %i %i %lli %lli %i %i %i\n" ,
myrank ,
e.sched.tasks[k].rid , e.sched.tasks[k].type ,
e.sched.tasks[k].subtype ,
(e.sched.tasks[k].cj == NULL) , e.sched.tasks[k].tic ,
e.sched.tasks[k].toc ,
e.sched.tasks[k].ci->count ,
(e.sched.tasks[k].cj!=NULL)?e.sched.tasks[k].cj->count:0 ,
e.sched.tasks[k].flags);
fflush(stdout);
sleep(1);
}
}
#else
write_output_serial(&e, &us, myrank, nr_nodes, MPI_COMM_WORLD, MPI_INFO_NULL);
for ( k = 0 ; k < e.sched.nr_tasks ; k++ )
if ( !e.sched.tasks[k].skip && !e.sched.tasks[k].implicit )
printf( " %i %i %i %i %lli %lli %i %i\n" ,
e.sched.tasks[k].rid , e.sched.tasks[k].type ,
e.sched.tasks[k].subtype ,
(e.sched.tasks[k].cj == NULL) , e.sched.tasks[k].tic ,
e.sched.tasks[k].toc ,
e.sched.tasks[k].ci->count ,
(e.sched.tasks[k].cj==NULL)?0:e.sched.tasks[k].cj->count );
#endif */
/* Write final output. */
#if defined(WITH_MPI)
#if defined(HAVE_PARALLEL_HDF5)
write_output_parallel(&e, &us, myrank, nr_nodes, MPI_COMM_WORLD,
MPI_INFO_NULL);
#else
write_output_serial(&e, &us, myrank, nr_nodes, MPI_COMM_WORLD, MPI_INFO_NULL);
#endif
#else
write_output_single(&e, &us);
write_output_single(&e, &us);
#endif
#ifdef WITH_MPI
if ( MPI_Finalize() != MPI_SUCCESS )
error( "call to MPI_Finalize failed with error %i." , res );
if (MPI_Finalize() != MPI_SUCCESS)
error("call to MPI_Finalize failed with error %i.", res);
#endif
/* Say goodbye. */
message( "done." );
/* All is calm, all is bright. */
return 0;
/* Say goodbye. */
message("done.");
/* All is calm, all is bright. */
return 0;
}
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment