Commit f01a4e0c authored by James Willis's avatar James Willis
Browse files

Merge branch 'master' into dopair-vectorisation-merge

parents ed2260b9 c2c61436
......@@ -91,6 +91,7 @@ theory/SPH/*.pdf
theory/paper_pasc/pasc_paper.pdf
theory/Multipoles/fmm.pdf
theory/Multipoles/fmm_standalone.pdf
theory/Multipoles/potential.pdf
m4/libtool.m4
m4/ltoptions.m4
......
......@@ -27,6 +27,7 @@ Valid options are:
-f {int} Overwrite the CPU frequency (Hz) to be used for time measurements.
-g Run with an external gravitational potential.
-G Run with self-gravity.
-M Reconstruct the multipoles every time-step.
-n {int} Execute a fixed number of time steps. When unset use the time_end parameter to stop.
-s Run with hydrodynamics.
-S Run with stars.
......
......@@ -215,6 +215,21 @@ elif test "$gravity_force_checks" != "no"; then
AC_DEFINE_UNQUOTED([SWIFT_GRAVITY_FORCE_CHECKS], [$enableval] ,[Enable gravity brute-force checks])
fi
# Check if we want to zero the gravity forces for all particles below some ID.
AC_ARG_ENABLE([no-gravity-below-id],
[AS_HELP_STRING([--enable-no-gravity-below-id],
[Zeros the gravitational acceleration of all particles with an ID smaller than @<:@N@:>@]
)],
[no_gravity_below_id="$enableval"],
[no_gravity_below_id="no"]
)
if test "$no_gravity_below_id" == "yes"; then
AC_MSG_ERROR(Need to specify the ID below which particles get zero forces when using --enable-no-gravity-below-id!)
elif test "$no_gravity_below_id" != "no"; then
AC_DEFINE_UNQUOTED([SWIFT_NO_GRAVITY_BELOW_ID], [$enableval] ,[Particles with smaller ID than this will have zero gravity forces])
fi
# Define HAVE_POSIX_MEMALIGN if it works.
AX_FUNC_POSIX_MEMALIGN
......@@ -854,8 +869,10 @@ AC_MSG_RESULT([
Adiabatic index : $with_gamma
Riemann solver : $with_riemann
Cooling function : $with_cooling
External potential : $with_potential
Multipole order : $with_multipole_order
No gravity below ID : $no_gravity_below_id
Task debugging : $enable_task_debugging
Debugging checks : $enable_debugging_checks
......
......@@ -82,6 +82,8 @@ void print_help_message() {
"Run with an external gravitational potential.");
printf(" %2s %8s %s\n", "-F", "", "Run with feedback.");
printf(" %2s %8s %s\n", "-G", "", "Run with self-gravity.");
printf(" %2s %8s %s\n", "-M", "",
"Reconstruct the multipoles every time-step.");
printf(" %2s %8s %s\n", "-n", "{int}",
"Execute a fixed number of time steps. When unset use the time_end "
"parameter to stop.");
......@@ -164,6 +166,7 @@ int main(int argc, char *argv[]) {
int with_stars = 0;
int with_fp_exceptions = 0;
int with_drift_all = 0;
int with_mpole_reconstruction = 0;
int verbose = 0;
int nr_threads = 1;
int with_verbose_timers = 0;
......@@ -172,7 +175,8 @@ int main(int argc, char *argv[]) {
/* Parse the parameters */
int c;
while ((c = getopt(argc, argv, "acCdDef:FgGhn:sSt:Tv:y:")) != -1) switch (c) {
while ((c = getopt(argc, argv, "acCdDef:FgGhMn:sSt:Tv:y:")) != -1)
switch (c) {
case 'a':
with_aff = 1;
break;
......@@ -210,6 +214,9 @@ int main(int argc, char *argv[]) {
case 'h':
if (myrank == 0) print_help_message();
return 0;
case 'M':
with_mpole_reconstruction = 1;
break;
case 'n':
if (sscanf(optarg, "%d", &nsteps) != 1) {
if (myrank == 0) printf("Error parsing fixed number of steps.\n");
......@@ -521,6 +528,8 @@ int main(int argc, char *argv[]) {
/* Construct the engine policy */
int engine_policies = ENGINE_POLICY | engine_policy_steal;
if (with_drift_all) engine_policies |= engine_policy_drift_all;
if (with_mpole_reconstruction)
engine_policies |= engine_policy_reconstruct_mpoles;
if (with_hydro) engine_policies |= engine_policy_hydro;
if (with_self_gravity) engine_policies |= engine_policy_self_gravity;
if (with_external_gravity) engine_policies |= engine_policy_external_gravity;
......@@ -628,7 +637,7 @@ int main(int argc, char *argv[]) {
for (int k = 0; k < timer_count; k++)
printf("%.3f\t", clocks_from_ticks(timers[k]));
printf("\n");
timers_reset(0xFFFFFFFFllu);
timers_reset(timers_mask_all);
}
#ifdef SWIFT_DEBUG_TASKS
......
......@@ -46,7 +46,7 @@ include_HEADERS = space.h runner.h queue.h task.h lock.h cell.h part.h const.h \
hydro_properties.h riemann.h threadpool.h cooling.h cooling_struct.h sourceterms.h \
sourceterms_struct.h statistics.h memswap.h cache.h runner_doiact_vec.h profiler.h \
dump.h logger.h active.h timeline.h xmf.h gravity_properties.h gravity_derivatives.h \
vector_power.h collectgroup.h hydro_space.h sort_part.h
gravity_softened_derivatives.h vector_power.h collectgroup.h hydro_space.h sort_part.h
# Common source files
AM_SOURCES = space.c runner.c queue.c task.c cell.c engine.c \
......
......@@ -129,6 +129,7 @@ int cell_unpack(struct pcell *pc, struct cell *c, struct space *s) {
temp->depth = c->depth + 1;
temp->split = 0;
temp->dx_max = 0.f;
temp->dx_max_sort = 0.f;
temp->nodeID = c->nodeID;
temp->parent = c;
c->progeny[k] = temp;
......@@ -1103,33 +1104,93 @@ void cell_reset_task_counters(struct cell *c) {
}
/**
* @brief Checks whether the cells are direct neighbours ot not. Both cells have
* to be of the same size
* @brief Recursively construct all the multipoles in a cell hierarchy.
*
* @param ci First #cell.
* @param cj Second #cell.
*
* @todo Deal with periodicity.
* @param c The #cell.
* @param ti_current The current integer time.
*/
int cell_are_neighbours(const struct cell *restrict ci,
const struct cell *restrict cj) {
void cell_make_multipoles(struct cell *c, integertime_t ti_current) {
#ifdef SWIFT_DEBUG_CHECKS
if (ci->width[0] != cj->width[0]) error("Cells of different size !");
#endif
/* Reset everything */
gravity_reset(c->multipole);
/* Maximum allowed distance */
const double min_dist =
1.2 * ci->width[0]; /* 1.2 accounts for rounding errors */
if (c->split) {
/* (Manhattan) Distance between the cells */
for (int k = 0; k < 3; k++) {
const double center_i = ci->loc[k];
const double center_j = cj->loc[k];
if (fabs(center_i - center_j) > min_dist) return 0;
/* Compute CoM of all progenies */
double CoM[3] = {0., 0., 0.};
double mass = 0.;
for (int k = 0; k < 8; ++k) {
if (c->progeny[k] != NULL) {
const struct gravity_tensors *m = c->progeny[k]->multipole;
CoM[0] += m->CoM[0] * m->m_pole.M_000;
CoM[1] += m->CoM[1] * m->m_pole.M_000;
CoM[2] += m->CoM[2] * m->m_pole.M_000;
mass += m->m_pole.M_000;
}
}
c->multipole->CoM[0] = CoM[0] / mass;
c->multipole->CoM[1] = CoM[1] / mass;
c->multipole->CoM[2] = CoM[2] / mass;
return 1;
/* Now shift progeny multipoles and add them up */
struct multipole temp;
double r_max = 0.;
for (int k = 0; k < 8; ++k) {
if (c->progeny[k] != NULL) {
const struct cell *cp = c->progeny[k];
const struct multipole *m = &cp->multipole->m_pole;
/* Contribution to multipole */
gravity_M2M(&temp, m, c->multipole->CoM, cp->multipole->CoM);
gravity_multipole_add(&c->multipole->m_pole, &temp);
/* Upper limit of max CoM<->gpart distance */
const double dx = c->multipole->CoM[0] - cp->multipole->CoM[0];
const double dy = c->multipole->CoM[1] - cp->multipole->CoM[1];
const double dz = c->multipole->CoM[2] - cp->multipole->CoM[2];
const double r2 = dx * dx + dy * dy + dz * dz;
r_max = max(r_max, cp->multipole->r_max + sqrt(r2));
}
}
/* Alternative upper limit of max CoM<->gpart distance */
const double dx = c->multipole->CoM[0] > c->loc[0] + c->width[0] / 2.
? c->multipole->CoM[0] - c->loc[0]
: c->loc[0] + c->width[0] - c->multipole->CoM[0];
const double dy = c->multipole->CoM[1] > c->loc[1] + c->width[1] / 2.
? c->multipole->CoM[1] - c->loc[1]
: c->loc[1] + c->width[1] - c->multipole->CoM[1];
const double dz = c->multipole->CoM[2] > c->loc[2] + c->width[2] / 2.
? c->multipole->CoM[2] - c->loc[2]
: c->loc[2] + c->width[2] - c->multipole->CoM[2];
/* Take minimum of both limits */
c->multipole->r_max = min(r_max, sqrt(dx * dx + dy * dy + dz * dz));
} else {
if (c->gcount > 0) {
gravity_P2M(c->multipole, c->gparts, c->gcount);
const double dx = c->multipole->CoM[0] > c->loc[0] + c->width[0] / 2.
? c->multipole->CoM[0] - c->loc[0]
: c->loc[0] + c->width[0] - c->multipole->CoM[0];
const double dy = c->multipole->CoM[1] > c->loc[1] + c->width[1] / 2.
? c->multipole->CoM[1] - c->loc[1]
: c->loc[1] + c->width[1] - c->multipole->CoM[1];
const double dz = c->multipole->CoM[2] > c->loc[2] + c->width[2] / 2.
? c->multipole->CoM[2] - c->loc[2]
: c->loc[2] + c->width[2] - c->multipole->CoM[2];
c->multipole->r_max = sqrt(dx * dx + dy * dy + dz * dz);
} else {
gravity_multipole_init(&c->multipole->m_pole);
c->multipole->CoM[0] = c->loc[0] + c->width[0] / 2.;
c->multipole->CoM[1] = c->loc[1] + c->width[1] / 2.;
c->multipole->CoM[2] = c->loc[2] + c->width[2] / 2.;
c->multipole->r_max = 0.;
}
}
c->ti_old_multipole = ti_current;
}
/**
......@@ -1145,6 +1206,8 @@ void cell_check_multipole(struct cell *c, void *data) {
struct gravity_tensors ma;
const double tolerance = 1e-3; /* Relative */
return;
/* First recurse */
if (c->split)
for (int k = 0; k < 8; k++)
......@@ -1244,28 +1307,45 @@ int cell_unskip_tasks(struct cell *c, struct scheduler *s) {
/* Un-skip the density tasks involved with this cell. */
for (struct link *l = c->density; l != NULL; l = l->next) {
struct task *t = l->t;
const struct cell *ci = t->ci;
const struct cell *cj = t->cj;
struct cell *ci = t->ci;
struct cell *cj = t->cj;
scheduler_activate(s, t);
/* Set the correct sorting flags */
if (t->type == task_type_pair) {
if (ci->dx_max_sort > space_maxreldx * ci->dmin) {
for (struct cell *finger = ci; finger != NULL; finger = finger->parent)
finger->sorted = 0;
}
if (cj->dx_max_sort > space_maxreldx * cj->dmin) {
for (struct cell *finger = cj; finger != NULL; finger = finger->parent)
finger->sorted = 0;
}
if (!(ci->sorted & (1 << t->flags))) {
atomic_or(&ci->sorts->flags, (1 << t->flags));
#ifdef SWIFT_DEBUG_CHECKS
if (!(ci->sorts->flags & (1 << t->flags)))
error("bad flags in sort task.");
#endif
scheduler_activate(s, ci->sorts);
if (ci->nodeID == engine_rank) scheduler_activate(s, ci->drift);
}
if (!(cj->sorted & (1 << t->flags))) {
atomic_or(&cj->sorts->flags, (1 << t->flags));
#ifdef SWIFT_DEBUG_CHECKS
if (!(cj->sorts->flags & (1 << t->flags)))
error("bad flags in sort task.");
#endif
scheduler_activate(s, cj->sorts);
if (cj->nodeID == engine_rank) scheduler_activate(s, cj->drift);
}
}
/* Check whether there was too much particle motion */
/* Only interested in pair interactions as of here. */
if (t->type == task_type_pair || t->type == task_type_sub_pair) {
/* Check whether there was too much particle motion, i.e. the
cell neighbour conditions were violated. */
if (t->tight &&
(max(ci->h_max, cj->h_max) + ci->dx_max + cj->dx_max > cj->dmin ||
ci->dx_max > space_maxreldx * ci->h_max ||
cj->dx_max > space_maxreldx * cj->h_max))
max(ci->h_max, cj->h_max) + ci->dx_max + cj->dx_max > cj->dmin)
rebuild = 1;
#ifdef WITH_MPI
......@@ -1287,10 +1367,12 @@ int cell_unskip_tasks(struct cell *c, struct scheduler *s) {
if (l == NULL) error("Missing link to send_xv task.");
scheduler_activate(s, l->t);
if (cj->super->drift)
scheduler_activate(s, cj->super->drift);
/* Drift both cells, the foreign one at the level which it is sent. */
if (l->t->ci->drift)
scheduler_activate(s, l->t->ci->drift);
else
error("Drift task missing !");
if (t->type == task_type_pair) scheduler_activate(s, cj->drift);
if (cell_is_active(cj, e)) {
for (l = cj->send_rho; l != NULL && l->t->cj->nodeID != ci->nodeID;
......@@ -1323,10 +1405,12 @@ int cell_unskip_tasks(struct cell *c, struct scheduler *s) {
if (l == NULL) error("Missing link to send_xv task.");
scheduler_activate(s, l->t);
if (ci->super->drift)
scheduler_activate(s, ci->super->drift);
/* Drift both cells, the foreign one at the level which it is sent. */
if (l->t->ci->drift)
scheduler_activate(s, l->t->ci->drift);
else
error("Drift task missing !");
if (t->type == task_type_pair) scheduler_activate(s, ci->drift);
if (cell_is_active(ci, e)) {
for (l = ci->send_rho; l != NULL && l->t->cj->nodeID != cj->nodeID;
......@@ -1341,6 +1425,14 @@ int cell_unskip_tasks(struct cell *c, struct scheduler *s) {
if (l == NULL) error("Missing link to send_ti task.");
scheduler_activate(s, l->t);
}
} else if (t->type == task_type_pair) {
scheduler_activate(s, ci->drift);
scheduler_activate(s, cj->drift);
}
#else
if (t->type == task_type_pair) {
scheduler_activate(s, ci->drift);
scheduler_activate(s, cj->drift);
}
#endif
}
......@@ -1355,7 +1447,6 @@ int cell_unskip_tasks(struct cell *c, struct scheduler *s) {
scheduler_activate(s, l->t);
if (c->extra_ghost != NULL) scheduler_activate(s, c->extra_ghost);
if (c->ghost != NULL) scheduler_activate(s, c->ghost);
if (c->init != NULL) scheduler_activate(s, c->init);
if (c->init_grav != NULL) scheduler_activate(s, c->init_grav);
if (c->drift != NULL) scheduler_activate(s, c->drift);
if (c->kick1 != NULL) scheduler_activate(s, c->kick1);
......@@ -1409,7 +1500,9 @@ void cell_drift_particles(struct cell *c, const struct engine *e) {
/* Drift from the last time the cell was drifted to the current time */
const double dt = (ti_current - ti_old) * timeBase;
float dx_max = 0.f, dx2_max = 0.f, cell_h_max = 0.f;
float dx_max = 0.f, dx2_max = 0.f;
float dx_max_sort = 0.0f, dx2_max_sort = 0.f;
float cell_h_max = 0.f;
/* Check that we are actually going to move forward. */
if (ti_current < ti_old) error("Attempt to drift to the past");
......@@ -1421,8 +1514,13 @@ void cell_drift_particles(struct cell *c, const struct engine *e) {
for (int k = 0; k < 8; k++)
if (c->progeny[k] != NULL) {
struct cell *cp = c->progeny[k];
/* Collect */
cell_drift_particles(cp, e);
/* Update */
dx_max = max(dx_max, cp->dx_max);
dx_max_sort = max(dx_max_sort, cp->dx_max_sort);
cell_h_max = max(cell_h_max, cp->h_max);
}
......@@ -1443,6 +1541,11 @@ void cell_drift_particles(struct cell *c, const struct engine *e) {
gp->x_diff[1] * gp->x_diff[1] +
gp->x_diff[2] * gp->x_diff[2];
dx2_max = max(dx2_max, dx2);
/* Init gravity force fields. */
if (gpart_is_active(gp, e)) {
gravity_init_gpart(gp);
}
}
/* Loop over all the gas particles in the cell */
......@@ -1464,9 +1567,18 @@ void cell_drift_particles(struct cell *c, const struct engine *e) {
xp->x_diff[1] * xp->x_diff[1] +
xp->x_diff[2] * xp->x_diff[2];
dx2_max = max(dx2_max, dx2);
const float dx2_sort = xp->x_diff_sort[0] * xp->x_diff_sort[0] +
xp->x_diff_sort[1] * xp->x_diff_sort[1] +
xp->x_diff_sort[2] * xp->x_diff_sort[2];
dx2_max_sort = max(dx2_max_sort, dx2_sort);
/* Maximal smoothing length */
cell_h_max = max(cell_h_max, p->h);
/* Get ready for a density calculation */
if (part_is_active(p, e)) {
hydro_init_part(p, &e->s->hs);
}
}
/* Loop over all the star particles in the cell */
......@@ -1484,16 +1596,19 @@ void cell_drift_particles(struct cell *c, const struct engine *e) {
/* Now, get the maximal particle motion from its square */
dx_max = sqrtf(dx2_max);
dx_max_sort = sqrtf(dx2_max_sort);
} else {
cell_h_max = c->h_max;
dx_max = c->dx_max;
dx_max_sort = c->dx_max_sort;
}
/* Store the values */
c->h_max = cell_h_max;
c->dx_max = dx_max;
c->dx_max_sort = dx_max_sort;
/* Update the time of the last drift */
c->ti_old = ti_current;
......
......@@ -148,9 +148,6 @@ struct cell {
/*! Linked list of the tasks computing this cell's gravity forces. */
struct link *grav;
/*! The particle initialistation task */
struct task *init;
/*! The multipole initialistation task */
struct task *init_grav;
......@@ -239,6 +236,9 @@ struct cell {
/*! Last (integer) time the cell's particle was drifted forward in time. */
integertime_t ti_old;
/*! Last (integer) time the cell's sort arrays were updated. */
integertime_t ti_sort;
/*! Last (integer) time the cell's multipole was drifted forward in time. */
integertime_t ti_old_multipole;
......@@ -248,6 +248,9 @@ struct cell {
/*! Maximum particle movement in this cell since last construction. */
float dx_max;
/*! Maximum particle movement in this cell since the last sort. */
float dx_max_sort;
/*! Nr of #part in this cell. */
int count;
......@@ -351,8 +354,7 @@ int cell_link_gparts(struct cell *c, struct gpart *gparts);
int cell_link_sparts(struct cell *c, struct spart *sparts);
void cell_convert_hydro(struct cell *c, void *data);
void cell_clean_links(struct cell *c, void *data);
int cell_are_neighbours(const struct cell *restrict ci,
const struct cell *restrict cj);
void cell_make_multipoles(struct cell *c, integertime_t ti_current);
void cell_check_multipole(struct cell *c, void *data);
void cell_clean(struct cell *c);
void cell_check_particle_drift_point(struct cell *c, void *data);
......
......@@ -101,10 +101,12 @@ __attribute__((always_inline)) INLINE static void drift_part(
/* Predict the values of the extra fields */
hydro_predict_extra(p, xp, dt);
/* Compute offset since last cell construction */
xp->x_diff[0] -= xp->v_full[0] * dt;
xp->x_diff[1] -= xp->v_full[1] * dt;
xp->x_diff[2] -= xp->v_full[2] * dt;
/* Compute offsets since last cell construction */
for (int k = 0; k < 3; k++) {
const float dx = xp->v_full[k] * dt;
xp->x_diff[k] -= dx;
xp->x_diff_sort[k] -= dx;
}
}
/**
......
......@@ -144,10 +144,6 @@ void engine_make_hierarchical_tasks(struct engine *e, struct cell *c) {
/* Local tasks only... */
if (c->nodeID == e->nodeID) {
/* Add the init task. */
c->init = scheduler_addtask(s, task_type_init, task_subtype_none, 0, 0, c,
NULL, 0);
/* Add the two half kicks */
c->kick1 = scheduler_addtask(s, task_type_kick1, task_subtype_none, 0, 0,
c, NULL, 0);
......@@ -162,12 +158,6 @@ void engine_make_hierarchical_tasks(struct engine *e, struct cell *c) {
scheduler_addunlock(s, c->kick2, c->timestep);
scheduler_addunlock(s, c->timestep, c->kick1);
/* Add the drift task and its dependencies. */
c->drift = scheduler_addtask(s, task_type_drift, task_subtype_none, 0, 0,
c, NULL, 0);
scheduler_addunlock(s, c->drift, c->init);
if (is_self_gravity) {
/* Initialisation of the multipoles */
......@@ -1020,10 +1010,6 @@ void engine_addtasks_send(struct engine *e, struct cell *ci, struct cell *cj,
/* Create the tasks and their dependencies? */
if (t_xv == NULL) {
if (ci->super->drift == NULL)
ci->super->drift = scheduler_addtask(
s, task_type_drift, task_subtype_none, 0, 0, ci->super, NULL, 0);
t_xv = scheduler_addtask(s, task_type_send, task_subtype_xv, 4 * ci->tag,
0, ci, cj, 0);
t_rho = scheduler_addtask(s, task_type_send, task_subtype_rho,
......@@ -1063,7 +1049,10 @@ void engine_addtasks_send(struct engine *e, struct cell *ci, struct cell *cj,
#endif
/* Drift before you send */
scheduler_addunlock(s, ci->super->drift, t_xv);
if (ci->drift == NULL)
ci->drift = scheduler_addtask(s, task_type_drift, task_subtype_none, 0,
0, ci, NULL, 0);
scheduler_addunlock(s, ci->drift, t_xv);
/* The super-cell's timestep task should unlock the send_ti task. */
scheduler_addunlock(s, ci->super->timestep, t_ti);
......@@ -1693,7 +1682,7 @@ void engine_make_self_gravity_tasks(struct engine *e) {
/* Are the cells to close for a MM interaction ? */
if (!gravity_multipole_accept(ci->multipole, cj->multipole,
theta_crit_inv))
theta_crit_inv, 1))
scheduler_addtask(sched, task_type_pair, task_subtype_grav, 0, 0, ci,
cj, 1);
}
......@@ -1816,15 +1805,22 @@ void engine_count_and_link_tasks(struct engine *e) {
struct cell *const ci = t->ci;
struct cell *const cj = t->cj;
/* Link sort tasks together. */
if (t->type == task_type_sort && ci->split)
for (int j = 0; j < 8; j++)
if (ci->progeny[j] != NULL && ci->progeny[j]->sorts != NULL) {
scheduler_addunlock(sched, ci->progeny[j]->sorts, t);
/* Link sort tasks to the next-higher sort task. */
if (t->type == task_type_sort) {
struct cell *finger = t->ci->parent;
while (finger != NULL && finger->sorts == NULL) finger = finger->parent;
if (finger != NULL) scheduler_addunlock(sched, t, finger->sorts);
}
/* Link drift tasks to the next-higher drift task. */
else if (t->type == task_type_drift) {
struct cell *finger = ci->parent;
while (finger != NULL && finger->drift == NULL) finger = finger->parent;
if (finger != NULL) scheduler_addunlock(sched, t, finger->drift);
}
/* Link self tasks to cells. */
if (t->type == task_type_self) {
else if (t->type == task_type_self) {
atomic_inc(&ci->nr_tasks);
if (t->subtype == task_subtype_density) {
engine_addlink(e, &ci->density, t);
......@@ -1895,7 +1891,6 @@ static inline void engine_make_self_gravity_dependencies(
struct scheduler *sched, struct task *gravity, struct cell *c) {
/* init --> gravity --> grav_down --> kick */
scheduler_addunlock(sched, c->super->init, gravity);
scheduler_addunlock(sched, c->super->init_grav, gravity);
scheduler_addunlock(sched, gravity, c->super->grav_down);
}
......@@ -1912,7 +1907,7 @@ static inline void engine_make_external_gravity_dependencies(
struct scheduler *sched, struct task *gravity, struct cell *c) {
/* init --> external gravity --> kick */
scheduler_addunlock(sched, c->super->init, gravity);
scheduler_addunlock(sched, c->drift, gravity);
scheduler_addunlock(sched, gravity, c->super->kick2);
}
......@@ -2008,9 +2003,8 @@ static inline void engine_make_hydro_loops_dependencies(
struct scheduler *sched, struct task *density, struct task *gradient,
struct task *force, struct cell *c, int with_cooling) {
/* init --> density loop --> ghost --> gradient loop --> extra_ghost */
/* density loop --> ghost --> gradient loop --> extra_ghost */
/* extra_ghost --> force loop */
scheduler_addunlock(sched, c->super->init, density);
scheduler_addunlock(sched, density, c->super->ghost);
scheduler_addunlock(sched, c->super->ghost, gradient);
scheduler_addunlock(sched, gradient, c->super->extra_ghost);
......@@ -2041,8 +2035,7 @@ static inline void engine_make_hydro_loops_dependencies(struct scheduler *sched,
struct task *force,
struct cell *c,
int with_cooling) {
/* init --> density loop --> ghost --> force loop */
scheduler_addunlock(sched, c->super->init, density);
/* density loop --> ghost --> force loop */
scheduler_addunlock(sched, density, c->super->ghost);
scheduler_addunlock(sched, c->super->ghost, force);
......@@ -2078,8 +2071,16 @@ void engine_make_extra_hydroloop_tasks(struct engine *e) {
for (int ind = 0; ind < nr_tasks; ind++) {
struct task *t = &sched->tasks[ind];
/* Sort tasks depend on the drift of the cell. */
if (t->type == task_type_sort && t->ci->nodeID == engine_rank) {
scheduler_addunlock(sched, t->ci->drift, t);
}
/* Self-interaction? */
if (t->type == task_type_self && t->subtype == task_subtype_density) {