Skip to content
Snippets Groups Projects
Commit d1c0fd20 authored by Peter W. Draper's avatar Peter W. Draper
Browse files

Merge branch 'back_of_the_queue' into 'master'

Back of the queue

See merge request !929
parents 17abbebc 37d3d1fb
No related branches found
No related tags found
1 merge request!929Back of the queue
......@@ -36,6 +36,71 @@
/* Local headers. */
#include "atomic.h"
#include "error.h"
#include "memswap.h"
/**
* @brief Push the task at the given index up the heap until it is either at the
* top or smaller than its parent.
*
* @param q The task #queue.
* @param ind The index of the task to be sifted-down in the queue.
*
* @return The new index of the entry.
*/
int queue_bubble_up(struct queue *q, int ind) {
/* Set some pointers we will use often. */
struct queue_entry *entries = q->entries;
const float w = entries[ind].weight;
/* While we are not yet at the top of the heap... */
while (ind > 0) {
/* Check if the parent is larger and bail if not.. */
const int parent = (ind - 1) / 2;
if (w < entries[parent].weight) break;
/* Parent is not larger, so swap. */
memswap(&entries[ind], &entries[parent], sizeof(struct queue_entry));
ind = parent;
}
return ind;
}
/**
* @brief Push the task at the given index down the heap until both its children
* have a smaller weight.
*
* @param q The task #queue.
* @param ind The index of the task to be sifted-down in the queue.
*
* @return The new index of the entry.
*/
int queue_sift_down(struct queue *q, int ind) {
/* Set some pointers we will use often. */
struct queue_entry *entries = q->entries;
const int qcount = q->count;
const float w = entries[ind].weight;
/* While we still have at least one child... */
while (1) {
/* Check if we still have children. */
int child = 2 * ind + 1;
if (child >= qcount) break;
/* Which of both children is the largest? */
if (child + 1 < qcount && entries[child + 1].weight > entries[child].weight)
child += 1;
/* Do we want to swap with the largest child? */
if (entries[child].weight > w) {
memswap(&entries[ind], &entries[child], sizeof(struct queue_entry));
ind = child;
} else
break;
}
return ind;
}
/**
* @brief Enqueue all tasks in the incoming DEQ.
......@@ -44,8 +109,7 @@
*/
void queue_get_incoming(struct queue *q) {
int *tid = q->tid;
struct task *tasks = q->tasks;
struct queue_entry *entries = q->entries;
/* Loop over the incoming DEQ. */
while (1) {
......@@ -60,33 +124,31 @@ void queue_get_incoming(struct queue *q) {
/* Does the queue need to be grown? */
if (q->count == q->size) {
int *temp;
struct queue_entry *temp;
q->size *= queue_sizegrow;
if ((temp = (int *)malloc(sizeof(int) * q->size)) == NULL)
if ((temp = (struct queue_entry *)malloc(sizeof(struct queue_entry) *
q->size)) == NULL)
error("Failed to allocate new indices.");
memcpy(temp, tid, sizeof(int) * q->count);
free(tid);
q->tid = tid = temp;
memcpy(temp, entries, sizeof(struct queue_entry) * q->count);
free(entries);
q->entries = entries = temp;
}
/* Drop the task at the end of the queue. */
tid[q->count] = offset;
entries[q->count].tid = offset;
entries[q->count].weight = q->tasks[offset].weight;
q->count += 1;
atomic_dec(&q->count_incoming);
/* Shuffle up. */
for (int k = q->count - 1; k > 0; k = (k - 1) / 2)
if (tasks[tid[k]].weight > tasks[tid[(k - 1) / 2]].weight) {
int temp = tid[k];
tid[k] = tid[(k - 1) / 2];
tid[(k - 1) / 2] = temp;
} else
break;
/* Re-heap by bubbling up the new (last) element. */
queue_bubble_up(q, q->count - 1);
#ifdef SWIFT_DEBUG_CHECK
/* Check the queue's consistency. */
/* for (int k = 1; k < q->count; k++)
if ( tasks[ tid[(k-1)/2] ].weight < tasks[ tid[k] ].weight )
error( "Queue heap is disordered." ); */
for (int k = 1; k < q->count; k++)
if (entries[(k - 1) / 2].weight < entries[k].weight)
error("Queue heap is disordered.");
#endif
}
}
......@@ -131,8 +193,9 @@ void queue_init(struct queue *q, struct task *tasks) {
/* Allocate the task list if needed. */
q->size = queue_sizeinit;
if ((q->tid = (int *)malloc(sizeof(int) * q->size)) == NULL)
error("Failed to allocate queue tids.");
if ((q->entries = (struct queue_entry *)malloc(sizeof(struct queue_entry) *
q->size)) == NULL)
error("Failed to allocate queue entries.");
/* Set the tasks pointer. */
q->tasks = tasks;
......@@ -185,109 +248,53 @@ struct task *queue_gettask(struct queue *q, const struct task *prev,
}
/* Set some pointers we will use often. */
int *qtid = q->tid;
struct queue_entry *entries = q->entries;
struct task *qtasks = q->tasks;
const int old_qcount = q->count;
/* Data for the sliding window in which to try the task with the
best overlap with the previous task. */
struct {
int ind, tid;
float score;
} window[queue_search_window];
int window_count = 0;
int tid = -1;
int ind = -1;
/* Loop over the queue entries. */
for (int k = 0; k < old_qcount; k++) {
if (k < queue_search_window) {
window[window_count].ind = k;
window[window_count].tid = qtid[k];
window[window_count].score = task_overlap(prev, &qtasks[qtid[k]]);
window_count += 1;
} else {
/* Find the task with the largest overlap. */
int ind_max = 0;
for (int i = 1; i < window_count; i++)
if (window[i].score > window[ind_max].score) ind_max = i;
/* Try to lock that task. */
if (task_lock(&qtasks[window[ind_max].tid])) {
tid = window[ind_max].tid;
ind = window[ind_max].ind;
// message("best task has overlap %f.", window[ind_max].score);
break;
/* Otherwise, replace it with a new one from the queue. */
} else {
window[ind_max].ind = k;
window[ind_max].tid = qtid[k];
window[ind_max].score = task_overlap(prev, &qtasks[qtid[k]]);
}
}
}
int ind;
for (ind = 0; ind < old_qcount; ind++) {
/* If we didn't get a task, loop through whatever is left in the window. */
if (tid < 0) {
while (window_count > 0) {
int ind_max = 0;
for (int i = 1; i < window_count; i++)
if (window[i].score > window[ind_max].score) ind_max = i;
if (task_lock(&qtasks[window[ind_max].tid])) {
tid = window[ind_max].tid;
ind = window[ind_max].ind;
// message("best task has overlap %f.", window[ind_max].score);
break;
} else {
window_count -= 1;
window[ind_max] = window[window_count];
}
/* Try to lock the next task. */
if (task_lock(&qtasks[entries[ind].tid])) break;
/* Should we de-prioritize this task? */
if ((1ULL << qtasks[entries[ind].tid].type) &
queue_lock_fail_reweight_mask) {
/* Scale the task's weight. */
entries[ind].weight *= queue_lock_fail_reweight_factor;
/* Send it down the binary heap. */
if (queue_sift_down(q, ind) != ind) ind -= 1;
}
}
/* Did we get a task? */
if (ind >= 0) {
if (ind < old_qcount) {
/* Another one bites the dust. */
const int qcount = q->count -= 1;
/* Get a pointer on the task that we want to return. */
res = &qtasks[tid];
res = &qtasks[entries[ind].tid];
/* Swap this task with the last task and re-heap. */
int k = ind;
if (k < qcount) {
qtid[k] = qtid[qcount];
const float w = qtasks[qtid[k]].weight;
while (k > 0 && w > qtasks[qtid[(k - 1) / 2]].weight) {
int temp = q->tid[k];
q->tid[k] = q->tid[(k - 1) / 2];
q->tid[(k - 1) / 2] = temp;
k = (k - 1) / 2;
}
int i;
while ((i = 2 * k + 1) < qcount) {
if (i + 1 < qcount &&
qtasks[qtid[i + 1]].weight > qtasks[qtid[i]].weight)
i += 1;
if (qtasks[qtid[i]].weight > w) {
int temp = qtid[i];
qtid[i] = qtid[k];
qtid[k] = temp;
k = i;
} else
break;
}
if (ind < qcount) {
entries[ind] = entries[qcount];
ind = queue_bubble_up(q, ind);
ind = queue_sift_down(q, ind);
}
} else
res = NULL;
#ifdef SWIFT_DEBUG_CHECKS
/* Check the queue's consistency. */
/* for ( k = 1 ; k < q->count ; k++ )
if ( qtasks[ qtid[(k-1)/2] ].weight < qtasks[ qtid[k] ].weight )
error( "Queue heap is disordered." ); */
for (int k = 1; k < q->count; k++)
if (entries[(k - 1) / 2].weight < entries[k].weight)
error("Queue heap is disordered.");
#endif
/* Release the task lock. */
if (lock_unlock(qlock) != 0) error("Unlocking the qlock failed.\n");
......@@ -298,7 +305,7 @@ struct task *queue_gettask(struct queue *q, const struct task *prev,
void queue_clean(struct queue *q) {
free(q->tid);
free(q->entries);
free(q->tid_incoming);
}
......@@ -322,7 +329,7 @@ void queue_dump(int nodeID, int index, FILE *file, struct queue *q) {
/* Loop over the queue entries. */
for (int k = 0; k < q->count; k++) {
struct task *t = &q->tasks[q->tid[k]];
struct task *t = &q->tasks[q->entries[k].tid];
fprintf(file, "%d %d %d %s %s %.2f\n", nodeID, index, k,
taskID_names[t->type], subtaskID_names[t->subtype], t->weight);
......
......@@ -32,6 +32,12 @@
#define queue_incoming_size 10240
#define queue_struct_align 64
/* Constants dealing with task de-priorization. */
#define queue_lock_fail_reweight_factor 0.5
/* #define queue_lock_fail_reweight_mask \
((1ULL << task_type_send) | (1ULL << task_type_recv)) */
#define queue_lock_fail_reweight_mask ((1ULL << task_type_count) - 1)
/* Counters. */
enum {
queue_counter_swap = 0,
......@@ -39,6 +45,17 @@ enum {
};
extern int queue_counter[queue_counter_count];
/** Struct containing a task offset and a weight, used to build the binary heap
* of tasks in the queue. */
struct queue_entry {
/* The offset of the task in the task list. */
int tid;
/* The weight of the task. This is stored in queue as well since it may well
* be adjusted dynamically. */
float weight;
};
/** The queue struct. */
struct queue {
......@@ -51,8 +68,8 @@ struct queue {
/* The actual tasks to which the indices refer. */
struct task *tasks;
/* The task indices. */
int *tid;
/* The task indices and weights. */
struct queue_entry *entries;
/* DEQ for incoming tasks. */
int *tid_incoming;
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment