Skip to content
Snippets Groups Projects
Commit cb952932 authored by Matthieu Schaller's avatar Matthieu Schaller
Browse files

Added a new example: A small cosmological volume with some cooling on.

parent c8f45163
Branches
Tags
1 merge request!628Cosmo cooling
......@@ -56,8 +56,3 @@ InitialConditions:
cleanup_velocity_factors: 1
generate_gas_in_ics: 1 # Generate gas particles from the DM-only ICs
cleanup_smoothing_lengths: 1 # Since we generate gas, make use of the (expensive) cleaning-up procedure.
# Constant lambda cooling function
LambdaCooling:
lambda_cgs: 1e-22 # Cooling rate (in cgs units)
cooling_tstep_mult: 1.0 # Dimensionless pre-factor for the time-step condition
Small LCDM cosmological simulation generated by C. Power. Cosmology
is WMAP9 and the box is 100Mpc/h in size with 64^3 particles.
We use a softening length of 1/25th of the mean inter-particle separation.
The ICs have been generated to run with Gadget-2 so we need to switch
on the options to cancel the h-factors and a-factors at reading time.
We generate gas from the ICs using SWIFT's internal mechanism and set the
temperature to the expected gas temperature at this redshift.
The 'plotTempEvolution.py' plots the temperature evolution of the gas
in the simulated volume.
MD5 checksum of the ICs:
08736c3101fd738e22f5159f78e6022b small_cosmo_volume.hdf5
#!/bin/bash
wget http://virgodb.cosma.dur.ac.uk/swift-webstorage/ICs/small_cosmo_volume.hdf5
################################################################################
# This file is part of SWIFT.
# Copyright (c) 2018 Matthieu Schaller (matthieu.schaller@durham.ac.uk)
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published
# by the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
################################################################################
# Computes the temperature evolution of the gas in a cosmological box
# Physical constants needed for internal energy to temperature conversion
k_in_J_K = 1.38064852e-23
mH_in_kg = 1.6737236e-27
# Number of snapshots generated
n_snapshots = 160
import matplotlib
matplotlib.use("Agg")
from pylab import *
import h5py
import os.path
# Plot parameters
params = {'axes.labelsize': 10,
'axes.titlesize': 10,
'font.size': 9,
'legend.fontsize': 9,
'xtick.labelsize': 10,
'ytick.labelsize': 10,
'text.usetex': True,
'figure.figsize' : (3.15,3.15),
'figure.subplot.left' : 0.14,
'figure.subplot.right' : 0.99,
'figure.subplot.bottom' : 0.12,
'figure.subplot.top' : 0.99,
'figure.subplot.wspace' : 0.15,
'figure.subplot.hspace' : 0.12,
'lines.markersize' : 6,
'lines.linewidth' : 2.,
'text.latex.unicode': True
}
rcParams.update(params)
rc('font',**{'family':'sans-serif','sans-serif':['Times']})
# Read the simulation data
sim = h5py.File("snap_0000.hdf5", "r")
boxSize = sim["/Header"].attrs["BoxSize"][0]
time = sim["/Header"].attrs["Time"][0]
scheme = sim["/HydroScheme"].attrs["Scheme"][0]
kernel = sim["/HydroScheme"].attrs["Kernel function"][0]
neighbours = sim["/HydroScheme"].attrs["Kernel target N_ngb"][0]
eta = sim["/HydroScheme"].attrs["Kernel eta"][0]
alpha = sim["/HydroScheme"].attrs["Alpha viscosity"][0]
H_mass_fraction = sim["/HydroScheme"].attrs["Hydrogen mass fraction"][0]
H_transition_temp = sim["/HydroScheme"].attrs["Hydrogen ionization transition temperature"][0]
T_initial = sim["/HydroScheme"].attrs["Initial temperature"][0]
T_minimal = sim["/HydroScheme"].attrs["Minimal temperature"][0]
git = sim["Code"].attrs["Git Revision"]
cooling_model = sim["/SubgridScheme"].attrs["Cooling Model"]
if cooling_model == "Constant Lambda":
Lambda = sim["/SubgridScheme"].attrs["Lambda [cgs]"][0]
# Cosmological parameters
H_0 = sim["/Cosmology"].attrs["H0 [internal units]"][0]
gas_gamma = sim["/HydroScheme"].attrs["Adiabatic index"][0]
unit_length_in_cgs = sim["/Units"].attrs["Unit length in cgs (U_L)"]
unit_mass_in_cgs = sim["/Units"].attrs["Unit mass in cgs (U_M)"]
unit_time_in_cgs = sim["/Units"].attrs["Unit time in cgs (U_t)"]
unit_length_in_si = 0.01 * unit_length_in_cgs
unit_mass_in_si = 0.001 * unit_mass_in_cgs
unit_time_in_si = unit_time_in_cgs
# Primoridal ean molecular weight as a function of temperature
def mu(T, H_frac=H_mass_fraction, T_trans=H_transition_temp):
if T > T_trans:
return 4. / (8. - 5. * (1. - H_frac))
else:
return 4. / (1. + 3. * H_frac)
# Temperature of some primoridal gas with a given internal energy
def T(u, H_frac=H_mass_fraction, T_trans=H_transition_temp):
T_over_mu = (gas_gamma - 1.) * u * mH_in_kg / k_in_J_K
ret = np.ones(np.size(u)) * T_trans
# Enough energy to be ionized?
mask_ionized = (T_over_mu > (T_trans+1) / mu(T_trans+1, H_frac, T_trans))
if np.sum(mask_ionized) > 0:
ret[mask_ionized] = T_over_mu[mask_ionized] * mu(T_trans*10, H_frac, T_trans)
# Neutral gas?
mask_neutral = (T_over_mu < (T_trans-1) / mu((T_trans-1), H_frac, T_trans))
if np.sum(mask_neutral) > 0:
ret[mask_neutral] = T_over_mu[mask_neutral] * mu(0, H_frac, T_trans)
return ret
z = np.zeros(n_snapshots)
a = np.zeros(n_snapshots)
T_mean = np.zeros(n_snapshots)
T_std = np.zeros(n_snapshots)
T_log_mean = np.zeros(n_snapshots)
T_log_std = np.zeros(n_snapshots)
T_median = np.zeros(n_snapshots)
T_min = np.zeros(n_snapshots)
T_max = np.zeros(n_snapshots)
# Loop over all the snapshots
for i in range(n_snapshots):
sim = h5py.File("snap_%04d.hdf5"%i, "r")
z[i] = sim["/Cosmology"].attrs["Redshift"][0]
a[i] = sim["/Cosmology"].attrs["Scale-factor"][0]
u = sim["/PartType0/InternalEnergy"][:]
# Compute the temperature
u *= (unit_length_in_si**2 / unit_time_in_si**2)
u /= a[i]**(3 * (gas_gamma - 1.))
Temp = T(u)
# Gather statistics
T_median[i] = np.median(Temp)
T_mean[i] = Temp.mean()
T_std[i] = Temp.std()
T_log_mean[i] = np.log10(Temp).mean()
T_log_std[i] = np.log10(Temp).std()
T_min[i] = Temp.min()
T_max[i] = Temp.max()
# CMB evolution
a_evol = np.logspace(-3, 0, 60)
T_cmb = (1. / a_evol)**2 * 2.72
# Plot the interesting quantities
figure()
subplot(111, xscale="log", yscale="log")
fill_between(a, T_mean-T_std, T_mean+T_std, color='C0', alpha=0.1)
plot(a, T_max, ls='-.', color='C0', lw=1., label="${\\rm max}~T$")
plot(a, T_min, ls=':', color='C0', lw=1., label="${\\rm min}~T$")
plot(a, T_mean, color='C0', label="${\\rm mean}~T$", lw=1.5)
fill_between(a, 10**(T_log_mean-T_log_std), 10**(T_log_mean+T_log_std), color='C1', alpha=0.1)
plot(a, 10**T_log_mean, color='C1', label="${\\rm mean}~{\\rm log} T$", lw=1.5)
plot(a, T_median, color='C2', label="${\\rm median}~T$", lw=1.5)
legend(loc="upper left", frameon=False, handlelength=1.5)
# Cooling model
if cooling_model == "Constant Lambda":
text(1e-2, 6e4, "$\Lambda_{\\rm const} = %.1f\\times10^{%d}~[\\rm{cgs}]$"%(Lambda/10.**(int(log10(Lambda))), log10(Lambda)), fontsize=8)
else:
text(1e-2, 6e4, "No cooling")
# Expected lines
plot([1e-10, 1e10], [H_transition_temp, H_transition_temp], 'k--', lw=0.5, alpha=0.7)
text(2.5e-2, H_transition_temp*1.07, "$T_{\\rm HII\\rightarrow HI}$", va="bottom", alpha=0.7, fontsize=8)
plot([1e-10, 1e10], [T_minimal, T_minimal], 'k--', lw=0.5, alpha=0.7)
text(1e-2, T_minimal*0.8, "$T_{\\rm min}$", va="top", alpha=0.7, fontsize=8)
plot(a_evol, T_cmb, 'k--', lw=0.5, alpha=0.7)
text(a_evol[20], T_cmb[20]*0.55, "$(1+z)^2\\times T_{\\rm CMB,0}$", rotation=-34, alpha=0.7, fontsize=8, va="top", bbox=dict(facecolor='w', edgecolor='none', pad=1.0, alpha=0.9))
redshift_ticks = np.array([0., 1., 2., 5., 10., 20., 50., 100.])
redshift_labels = ["$0$", "$1$", "$2$", "$5$", "$10$", "$20$", "$50$", "$100$"]
a_ticks = 1. / (redshift_ticks + 1.)
xticks(a_ticks, redshift_labels)
minorticks_off()
xlabel("${\\rm Redshift}~z$", labelpad=0)
ylabel("${\\rm Temperature}~T~[{\\rm K}]$", labelpad=0)
xlim(9e-3, 1.1)
ylim(20, 2.5e7)
savefig("Temperature_evolution.png", dpi=200)
#!/bin/bash
# Generate the initial conditions if they are not present.
if [ ! -e small_cosmo_volume.hdf5 ]
then
echo "Fetching initial conditions for the small cosmological volume example..."
./getIC.sh
fi
# Run SWIFT
../swift -c -s -G -C -t 8 small_cosmo_volume.yml 2>&1 | tee output.log
# Plot the temperature evolution
python plotTempEvolution.py
# Define the system of units to use internally.
InternalUnitSystem:
UnitMass_in_cgs: 1.98848e43 # 10^10 M_sun
UnitLength_in_cgs: 3.08567758e24 # 1 Mpc
UnitVelocity_in_cgs: 1e5 # 1 km/s
UnitCurrent_in_cgs: 1 # Amperes
UnitTemp_in_cgs: 1 # Kelvin
Cosmology: # WMAP9 cosmology
Omega_m: 0.276
Omega_lambda: 0.724
Omega_b: 0.0455
h: 0.703
a_begin: 0.019607843 # z_ini = 50.
a_end: 1.0 # z_end = 0.
# Parameters governing the time integration
TimeIntegration:
dt_min: 1e-6
dt_max: 1e-2
# Parameters for the self-gravity scheme
Gravity:
eta: 0.025
theta: 0.3
comoving_softening: 0.0889 # 1/25th of the mean inter-particle separation: 88.9 kpc
max_physical_softening: 0.0889 # 1/25th of the mean inter-particle separation: 88.9 kpc
mesh_side_length: 64
# Parameters of the hydro scheme
SPH:
resolution_eta: 1.2348 # "48 Ngb" with the cubic spline kernel
CFL_condition: 0.1
initial_temperature: 7075. # (1 + z_ini)^2 * 2.72K
minimal_temperature: 100.
# Parameters governing the snapshots
Snapshots:
basename: snap
delta_time: 1.02
scale_factor_first: 0.02
# Parameters governing the conserved quantities statistics
Statistics:
delta_time: 1.02
scale_factor_first: 0.02
Scheduler:
max_top_level_cells: 8
cell_split_size: 50
# Parameters related to the initial conditions
InitialConditions:
file_name: small_cosmo_volume.hdf5
cleanup_h_factors: 1
cleanup_velocity_factors: 1
generate_gas_in_ics: 1 # Generate gas particles from the DM-only ICs
cleanup_smoothing_lengths: 1 # Since we generate gas, make use of the (expensive) cleaning-up procedure.
# Constant lambda cooling function
LambdaCooling:
lambda_cgs: 1e-30 # Cooling rate (in cgs units)
cooling_tstep_mult: 1.0 # Dimensionless pre-factor for the time-step condition
......@@ -35,9 +35,10 @@
* @param h_grpsph The HDF5 group in which to write
*/
__attribute__((always_inline)) INLINE static void cooling_write_flavour(
hid_t h_grpsph) {
hid_t h_grp, const struct cooling_function_data* cooling) {
io_write_attribute_s(h_grpsph, "Cooling Model", "Constant Lambda");
io_write_attribute_s(h_grp, "Cooling Model", "Constant Lambda");
io_write_attribute_d(h_grp, "Lambda [cgs]", cooling->lambda_cgs);
}
#endif
......
......@@ -1020,7 +1020,7 @@ void prepare_file(struct engine* e, const char* baseName, long long N_total[6],
h_grp = H5Gcreate(h_file, "/SubgridScheme", H5P_DEFAULT, H5P_DEFAULT,
H5P_DEFAULT);
if (h_grp < 0) error("Error while creating subgrid group");
cooling_write_flavour(h_grp);
cooling_write_flavour(h_grp, e->cooling_func);
chemistry_write_flavour(h_grp);
H5Gclose(h_grp);
......
......@@ -870,7 +870,7 @@ void write_output_serial(struct engine* e, const char* baseName,
h_grp = H5Gcreate(h_file, "/SubgridScheme", H5P_DEFAULT, H5P_DEFAULT,
H5P_DEFAULT);
if (h_grp < 0) error("Error while creating subgrid group");
cooling_write_flavour(h_grp);
cooling_write_flavour(h_grp, e->cooling_func);
chemistry_write_flavour(h_grp);
H5Gclose(h_grp);
......
......@@ -720,7 +720,7 @@ void write_output_single(struct engine* e, const char* baseName,
h_grp = H5Gcreate(h_file, "/SubgridScheme", H5P_DEFAULT, H5P_DEFAULT,
H5P_DEFAULT);
if (h_grp < 0) error("Error while creating subgrid group");
cooling_write_flavour(h_grp);
cooling_write_flavour(h_grp, e->cooling_func);
chemistry_write_flavour(h_grp);
H5Gclose(h_grp);
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment