Skip to content
Snippets Groups Projects
Commit c773c6cc authored by Matthieu Schaller's avatar Matthieu Schaller
Browse files

Added a script to generate the solution of the Sod shock for any ICs at any time t.

The solution is based on the book by E. Toro (2009). By default, the script matches the 
ICs given in makeIC.py.




Former-commit-id: a59c755755c560ee559d59bc8abf8250e3b384bc
parent 3b0eb44d
No related branches found
No related tags found
No related merge requests found
###############################################################################
# This file is part of SWIFT.
# Coypright (c) 2012 Pedro Gonnet (pedro.gonnet@durham.ac.uk),
# Matthieu Schaller (matthieu.schaller@durham.ac.uk)
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published
# by the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
##############################################################################
import random
from numpy import *
# Generates the analytical solution for the Sod shock test case
# The script works for a given left (x<0) and right (x>0) state and computes the solution at a later time t.
# The code writes five files rho.dat, P.dat, v.dat, u.dat and s.dat with the density, pressure, internal energy and
# entropic function on N points between x_min and x_max.
# This follows the solution given in (Toro, 2009)
# Parameters
rho_L = 4.
P_L = 1.
v_L = 0.
rho_R = 1.
P_R = 0.1795
v_R = 0.
gamma = 5./3. # Polytropic index
t = 0.12 # Time of the evolution
N = 1000 # Number of points
x_min = -0.15
x_max = 0.15
# ---------------------------------------------------------------
# Don't touch anything after this.
# ---------------------------------------------------------------
c_L = sqrt(gamma * P_L / rho_L) # Speed of the rarefaction wave
c_R = sqrt(gamma * P_R / rho_R) # Speed of the shock front
# Helpful variable
Gama = (gamma - 1.) / (gamma + 1.)
beta = (gamma - 1.) / (2. * gamma)
# Characteristic function and its derivative, following Toro (2009)
def compute_f(P_3, P, c):
u = P_3 / P
if u > 1:
term1 = gamma*((gamma+1.)*u + gamma-1.)
term2 = sqrt(2./term1)
fp = (u - 1.)*c*term2
dfdp = c*term2/P + (u - 1.)*c/term2*(-1./term1**2)*gamma*(gamma+1.)/P
else:
fp = (u**beta - 1.)*(2.*c/(gamma-1.))
dfdp = 2.*c/(gamma-1.)*beta*u**(beta-1.)/P
return (fp, dfdp)
# Solution of the Riemann problem following Toro (2009)
def RiemannProblem(rho_L, P_L, v_L, rho_R, P_R, v_R):
P_new = ((c_L + c_R + (v_L - v_R)*0.5*(gamma-1.))/(c_L / P_L**beta + c_R / P_R**beta))**(1./beta)
P_3 = 0.5*(P_R + P_L)
f_L = 1.
while fabs(P_3 - P_new) > 1e-6:
P_3 = P_new
(f_L, dfdp_L) = compute_f(P_3, P_L, c_L)
(f_R, dfdp_R) = compute_f(P_3, P_R, c_R)
f = f_L + f_R + (v_R - v_L)
df = dfdp_L + dfdp_R
dp = -f/df
prnew = P_3 + dp
v_3 = v_L - f_L
return (P_new, v_3)
# Solve Riemann problem for post-shock region
(P_3, v_3) = RiemannProblem(rho_L, P_L, v_L, rho_R, P_R, v_R)
# Check direction of shocks and wave
shock_R = (P_3 > P_R)
shock_L = (P_3 > P_L)
# Velocity of shock front and and rarefaction wave
if shock_R:
v_right = v_R + c_R**2*(P_3/P_R - 1.)/(gamma*(v_3-v_R))
else:
v_right = c_R + 0.5*(gamma+1.)*v_3 - 0.5*(gamma-1.)*v_R
if shock_L:
v_left = v_L + c_L**2*(P_3/p_L - 1.)/(gamma*(v_3-v_L))
else:
v_left = c_L - 0.5*(gamma+1.)*v_3 + 0.5*(gamma-1.)*v_L
# Compute position of the transitions
x_23 = -fabs(v_left) * t
if shock_L :
x_12 = -fabs(v_left) * t
else:
x_12 = -(c_L - v_L) * t
x_34 = v_3 * t
x_45 = fabs(v_right) * t
if shock_R:
x_56 = fabs(v_right) * t
else:
x_56 = (c_R + v_R) * t
# Prepare arrays
delta_x = (x_max - x_min) / N
x_s = arange(x_min, x_max, delta_x)
rho_s = zeros(N)
P_s = zeros(N)
v_s = zeros(N)
# Compute solution in the different regions
for i in range(N):
if x_s[i] <= x_12:
rho_s[i] = rho_L
P_s[i] = P_L
v_s[i] = v_L
if x_s[i] >= x_12 and x_s[i] < x_23:
if shock_L:
rho_s[i] = rho_L*(Gama + P_3/P_L)/(1. + Gama * P_3/P_L)
P_s[i] = P_3
v_s[i] = v_3
else:
rho_s[i] = rho_L*(Gama * (0. - x_s[i])/(c_L * t) + Gama * v_L/c_L + (1.-Gama))**(2./(gamma-1.))
P_s[i] = P_L*(rho_s[i] / rho_L)**gamma
v_s[i] = (1.-Gama)*(c_L -(0. - x_s[i]) / t) + Gama*v_L
if x_s[i] >= x_23 and x_s[i] < x_34:
if shock_L:
rho_s[i] = rho_L*(Gama + P_3/P_L)/(1+Gama * P_3/p_L)
else:
rho_s[i] = rho_L*(P_3 / P_L)**(1./gamma)
P_s[i] = P_3
v_s[i] = v_3
if x_s[i] >= x_34 and x_s[i] < x_45:
if shock_R:
rho_s[i] = rho_R*(Gama + P_3/P_R)/(1. + Gama * P_3/P_R)
else:
rho_s[i] = rho_R*(P_3 / P_R)**(1./gamma)
P_s[i] = P_3
v_s[i] = v_3
if x_s[i] >= x_45 and x_s[i] < x_56:
if shock_R:
rho_s[i] = rho_R
P_s[i] = P_R
v_s[i] = v_R
else:
rho_s[i] = rho_R*(Gama*(x_s[i])/(c_R*t) - Gama*v_R/c_R + (1.-Gama))**(2./(gamma-1.))
P_s[i] = p_R*(rho_s[i]/rho_R)**gamma
v_s[i] = (1.-Gama)*(-c_R - (-x_s[i])/t) + Gama*v_R
if x_s[i] >= x_56:
rho_s[i] = rho_R
P_s[i] = P_R
v_s[i] = v_R
# Additional arrays
u_s = P_s / (rho_s * (gamma - 1.)) #internal energy
s_s = P_s / rho_s**gamma # entropic function
#---------------------------------------------------------------
# Print arrays
savetxt("rho.dat", column_stack((x_s, rho_s)))
savetxt("P.dat", column_stack((x_s, P_s)))
savetxt("v.dat", column_stack((x_s, v_s)))
savetxt("u.dat", column_stack((x_s, u_s)))
savetxt("s.dat", column_stack((x_s, s_s)))
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment