Commit c49a9670 authored by Matthieu Schaller's avatar Matthieu Schaller
Browse files

Solution script for the constant cosmological volume

parent 3c5c5cb2
################################################################################
# This file is part of SWIFT.
# Copyright (c) 2018 Matthieu Schaller (matthieu.schaller@durham.ac.uk)
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published
# by the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
################################################################################
# Computes the analytical solution of the Zeldovich pancake and compares with
# the simulation result
# Parameters
T_i = 100. # Initial temperature of the gas (in K)
z_c = 1. # Redshift of caustic formation (non-linear collapse)
z_i = 100. # Initial redshift
gas_gamma = 5./3. # Gas adiabatic index
# Physical constants needed for internal energy to temperature conversion
k_in_J_K = 1.38064852e-23
mH_in_kg = 1.6737236e-27
import matplotlib
matplotlib.use("Agg")
from pylab import *
import h5py
import os.path
# Plot parameters
params = {'axes.labelsize': 10,
'axes.titlesize': 10,
'font.size': 12,
'legend.fontsize': 12,
'xtick.labelsize': 10,
'ytick.labelsize': 10,
'text.usetex': True,
'figure.figsize' : (9.90,6.45),
'figure.subplot.left' : 0.08,
'figure.subplot.right' : 0.99,
'figure.subplot.bottom' : 0.06,
'figure.subplot.top' : 0.99,
'figure.subplot.wspace' : 0.2,
'figure.subplot.hspace' : 0.12,
'lines.markersize' : 6,
'lines.linewidth' : 3.,
'text.latex.unicode': True
}
rcParams.update(params)
rc('font',**{'family':'sans-serif','sans-serif':['Times']})
# Read the simulation data
sim = h5py.File("box_0000.hdf5", "r")
boxSize = sim["/Header"].attrs["BoxSize"][0]
time = sim["/Header"].attrs["Time"][0]
redshift = sim["/Header"].attrs["Redshift"][0]
a = sim["/Header"].attrs["Scale-factor"][0]
scheme = sim["/HydroScheme"].attrs["Scheme"]
kernel = sim["/HydroScheme"].attrs["Kernel function"]
neighbours = sim["/HydroScheme"].attrs["Kernel target N_ngb"]
eta = sim["/HydroScheme"].attrs["Kernel eta"]
git = sim["Code"].attrs["Git Revision"]
H_0 = sim["/Cosmology"].attrs["H0 [internal units]"][0]
unit_length_in_cgs = sim["/Units"].attrs["Unit length in cgs (U_L)"]
unit_mass_in_cgs = sim["/Units"].attrs["Unit mass in cgs (U_M)"]
unit_time_in_cgs = sim["/Units"].attrs["Unit time in cgs (U_t)"]
sim.close()
# Mean quantities over time
z = np.zeros(120)
a = np.zeros(120)
S_mean = np.zeros(120)
S_std = np.zeros(120)
u_mean = np.zeros(120)
u_std = np.zeros(120)
P_mean = np.zeros(120)
P_std = np.zeros(120)
rho_mean = np.zeros(120)
rho_std = np.zeros(120)
vx_mean = np.zeros(120)
vy_mean = np.zeros(120)
vz_mean = np.zeros(120)
vx_std = np.zeros(120)
vy_std = np.zeros(120)
vz_std = np.zeros(120)
for i in range(120):
sim = h5py.File("box_%04d.hdf5"%i, "r")
z[i] = sim["/Cosmology"].attrs["Redshift"][0]
a[i] = sim["/Cosmology"].attrs["Scale-factor"][0]
S = sim["/PartType0/Entropy"][:]
S_mean[i] = np.mean(S)
S_std[i] = np.std(S)
u = sim["/PartType0/InternalEnergy"][:]
u_mean[i] = np.mean(u)
u_std[i] = np.std(u)
P = sim["/PartType0/Pressure"][:]
P_mean[i] = np.mean(P)
P_std[i] = np.std(P)
rho = sim["/PartType0/Density"][:]
rho_mean[i] = np.mean(rho)
rho_std[i] = np.std(rho)
v = sim["/PartType0/Velocities"][:,:]
vx_mean[i] = np.mean(v[:,0])
vy_mean[i] = np.mean(v[:,1])
vz_mean[i] = np.mean(v[:,2])
vx_std[i] = np.std(v[:,0])
vy_std[i] = np.std(v[:,1])
vz_std[i] = np.std(v[:,2])
# Move to physical quantities
rho_mean_phys = rho_mean / a**3
u_mean_phys = u_mean / a**(3*(gas_gamma - 1.))
S_mean_phys = S_mean
# Solution in physical coordinates
#T_solution = np.ones(T) / a
figure()
# Density evolution --------------------------------
subplot(231)#, yscale="log")
semilogx(a, rho_mean, '-', color='r', lw=1)
xlabel("${\\rm Scale-factor}$", labelpad=0.)
ylabel("${\\rm Comoving~density}$", labelpad=0.)
# Thermal energy evolution --------------------------------
subplot(232)#, yscale="log")
semilogx(a, u_mean, '-', color='r', lw=1)
xlabel("${\\rm Scale-factor}$", labelpad=0.)
ylabel("${\\rm Comoving~internal~energy}$", labelpad=0.)
# Entropy evolution --------------------------------
subplot(233)#, yscale="log")
semilogx(a, S_mean, '-', color='r', lw=1)
xlabel("${\\rm Scale-factor}$", labelpad=0.)
ylabel("${\\rm Comoving~entropy}$", labelpad=0.)
# Peculiar velocity evolution ---------------------
subplot(234)
semilogx(a, vx_mean, '-', color='r', lw=1)
semilogx(a, vy_mean, '-', color='g', lw=1)
semilogx(a, vz_mean, '-', color='b', lw=1)
xlabel("${\\rm Scale-factor}$", labelpad=0.)
ylabel("${\\rm Peculiar~velocity~mean}$", labelpad=0.)
# Peculiar velocity evolution ---------------------
subplot(235)
semilogx(a, vx_std, '--', color='r', lw=1)
semilogx(a, vy_std, '--', color='g', lw=1)
semilogx(a, vz_std, '--', color='b', lw=1)
xlabel("${\\rm Scale-factor}$", labelpad=0.)
ylabel("${\\rm Peculiar~velocity~std-dev}$", labelpad=0.)
# Information -------------------------------------
subplot(236, frameon=False)
plot([-0.49, 0.1], [0.62, 0.62], 'k-', lw=1)
text(-0.49, 0.5, "$\\textsc{Swift}$ %s"%git, fontsize=10)
text(-0.49, 0.4, scheme, fontsize=10)
text(-0.49, 0.3, kernel, fontsize=10)
text(-0.49, 0.2, "$%.2f$ neighbours ($\\eta=%.3f$)"%(neighbours, eta), fontsize=10)
xlim(-0.5, 0.5)
ylim(0, 1)
xticks([])
yticks([])
savefig("ConstantBox_comoving.png", dpi=200)
figure()
# Density evolution --------------------------------
subplot(231)#, yscale="log")
loglog(a, rho_mean_phys, '-', color='r', lw=1)
xlabel("${\\rm Scale-factor}$")
ylabel("${\\rm Physical~density}$")
# Thermal energy evolution --------------------------------
subplot(232)#, yscale="log")
loglog(a, u_mean_phys, '-', color='r', lw=1)
xlabel("${\\rm Scale-factor}$")
ylabel("${\\rm Physical~internal~energy}$")
# Entropy evolution --------------------------------
subplot(233)#, yscale="log")
semilogx(a, S_mean_phys, '-', color='r', lw=1)
xlabel("${\\rm Scale-factor}$")
ylabel("${\\rm Physical~entropy}$")
# Information -------------------------------------
subplot(236, frameon=False)
plot([-0.49, 0.1], [0.62, 0.62], 'k-', lw=1)
text(-0.49, 0.5, "$\\textsc{Swift}$ %s"%git, fontsize=10)
text(-0.49, 0.4, scheme, fontsize=10)
text(-0.49, 0.3, kernel, fontsize=10)
text(-0.49, 0.2, "$%.2f$ neighbours ($\\eta=%.3f$)"%(neighbours, eta), fontsize=10)
xlim(-0.5, 0.5)
ylim(0, 1)
xticks([])
yticks([])
savefig("ConstantBox_physical.png", dpi=200)
Supports Markdown
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment