Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
SWIFTsim
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Deploy
Releases
Model registry
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
SWIFT
SWIFTsim
Commits
c4228d9d
Commit
c4228d9d
authored
8 years ago
by
Matthieu Schaller
Browse files
Options
Downloads
Patches
Plain Diff
Added script to check accuracy of gravity calculation
parent
29a5a7a1
No related branches found
No related tags found
1 merge request
!331
Gravity multi dt
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
examples/plot_gravity_checks.py
+225
-0
225 additions, 0 deletions
examples/plot_gravity_checks.py
with
225 additions
and
0 deletions
examples/plot_gravity_checks.py
0 → 100644
+
225
−
0
View file @
c4228d9d
#!/usr/bin/env python
import
sys
import
glob
import
re
import
numpy
as
np
import
matplotlib.pyplot
as
plt
params
=
{
'
axes.labelsize
'
:
14
,
'
axes.titlesize
'
:
18
,
'
font.size
'
:
12
,
'
legend.fontsize
'
:
12
,
'
xtick.labelsize
'
:
14
,
'
ytick.labelsize
'
:
14
,
'
text.usetex
'
:
True
,
'
figure.figsize
'
:
(
10
,
10
),
'
figure.subplot.left
'
:
0.06
,
'
figure.subplot.right
'
:
0.99
,
'
figure.subplot.bottom
'
:
0.06
,
'
figure.subplot.top
'
:
0.985
,
'
figure.subplot.wspace
'
:
0.14
,
'
figure.subplot.hspace
'
:
0.14
,
'
lines.markersize
'
:
6
,
'
lines.linewidth
'
:
3.
,
'
text.latex.unicode
'
:
True
}
plt
.
rcParams
.
update
(
params
)
plt
.
rc
(
'
font
'
,
**
{
'
family
'
:
'
sans-serif
'
,
'
sans-serif
'
:[
'
Times
'
]})
min_error
=
1e-6
max_error
=
1e-1
num_bins
=
51
# Construct the bins
bin_edges
=
np
.
linspace
(
np
.
log10
(
min_error
),
np
.
log10
(
max_error
),
num_bins
+
1
)
bin_size
=
(
np
.
log10
(
max_error
)
-
np
.
log10
(
min_error
))
/
num_bins
bins
=
0.5
*
(
bin_edges
[
1
:]
+
bin_edges
[:
-
1
])
bin_edges
=
10
**
bin_edges
bins
=
10
**
bins
# Colours
cols
=
[
'
b
'
,
'
g
'
,
'
r
'
,
'
m
'
]
# Time-step to plot
step
=
int
(
sys
.
argv
[
1
])
# Find the files for the different expansion orders
order_list
=
glob
.
glob
(
"
gravity_checks_step%d_order*.dat
"
%
step
)
num_order
=
len
(
order_list
)
# Get the multipole orders
order
=
np
.
zeros
(
num_order
)
for
i
in
range
(
num_order
):
order
[
i
]
=
int
(
order_list
[
i
][
26
])
# Start the plot
plt
.
figure
()
# Get the Gadget-2 data if existing
gadget2_file_list
=
glob
.
glob
(
"
forcetest_gadget2.txt
"
)
if
len
(
gadget2_file_list
)
!=
0
:
gadget2_data
=
np
.
loadtxt
(
gadget2_file_list
[
0
])
gadget2_ids
=
gadget2_data
[:,
0
]
gadget2_pos
=
gadget2_data
[:,
1
:
4
]
gadget2_a_exact
=
gadget2_data
[:,
4
:
7
]
gadget2_a_grav
=
gadget2_data
[:,
7
:
10
]
# Sort stuff
sort_index
=
np
.
argsort
(
gadget2_ids
)
gadget2_ids
=
gadget2_ids
[
sort_index
]
gadget2_pos
=
gadget2_pos
[
sort_index
,
:]
gadget2_a_exact
=
gadget2_a_exact
[
sort_index
,
:]
gadget2_a_grav
=
gadget2_a_grav
[
sort_index
,
:]
# Compute the error norm
diff
=
gadget2_a_exact
-
gadget2_a_grav
norm_diff
=
np
.
sqrt
(
diff
[:,
0
]
**
2
+
diff
[:,
1
]
**
2
+
diff
[:,
2
]
**
2
)
norm_a
=
np
.
sqrt
(
gadget2_a_exact
[:,
0
]
**
2
+
gadget2_a_exact
[:,
1
]
**
2
+
gadget2_a_exact
[:,
2
]
**
2
)
norm_error
=
norm_diff
/
norm_a
error_x
=
abs
(
diff
[:,
0
])
/
norm_a
error_y
=
abs
(
diff
[:,
1
])
/
norm_a
error_z
=
abs
(
diff
[:,
2
])
/
norm_a
# Bin the error
norm_error_hist
,
_
=
np
.
histogram
(
norm_error
,
bins
=
bin_edges
,
density
=
False
)
/
(
np
.
size
(
norm_error
)
*
bin_size
)
error_x_hist
,
_
=
np
.
histogram
(
error_x
,
bins
=
bin_edges
,
density
=
False
)
/
(
np
.
size
(
norm_error
)
*
bin_size
)
error_y_hist
,
_
=
np
.
histogram
(
error_y
,
bins
=
bin_edges
,
density
=
False
)
/
(
np
.
size
(
norm_error
)
*
bin_size
)
error_z_hist
,
_
=
np
.
histogram
(
error_z
,
bins
=
bin_edges
,
density
=
False
)
/
(
np
.
size
(
norm_error
)
*
bin_size
)
norm_median
=
np
.
median
(
norm_error
)
median_x
=
np
.
median
(
error_x
)
median_y
=
np
.
median
(
error_y
)
median_z
=
np
.
median
(
error_z
)
norm_per95
=
np
.
percentile
(
norm_error
,
95
)
per95_x
=
np
.
percentile
(
error_x
,
95
)
per95_y
=
np
.
percentile
(
error_y
,
95
)
per95_z
=
np
.
percentile
(
error_z
,
95
)
plt
.
subplot
(
221
)
plt
.
semilogx
(
bins
,
norm_error_hist
,
'
k--
'
,
label
=
"
Gadget-2
"
)
plt
.
plot
([
norm_median
,
norm_median
],
[
2.7
,
3
],
'
k-
'
,
lw
=
1
)
plt
.
plot
([
norm_per95
,
norm_per95
],
[
2.7
,
3
],
'
k:
'
,
lw
=
1
)
plt
.
subplot
(
222
)
plt
.
semilogx
(
bins
,
error_x_hist
,
'
k--
'
,
label
=
"
Gadget-2
"
)
plt
.
plot
([
median_x
,
median_x
],
[
1.8
,
2
],
'
k-
'
,
lw
=
1
)
plt
.
plot
([
per95_x
,
per95_x
],
[
1.8
,
2
],
'
k:
'
,
lw
=
1
)
plt
.
subplot
(
223
)
plt
.
semilogx
(
bins
,
error_y_hist
,
'
k--
'
,
label
=
"
Gadget-2
"
)
plt
.
plot
([
median_y
,
median_y
],
[
1.8
,
2
],
'
k-
'
,
lw
=
1
)
plt
.
plot
([
per95_y
,
per95_y
],
[
1.8
,
2
],
'
k:
'
,
lw
=
1
)
plt
.
subplot
(
224
)
plt
.
semilogx
(
bins
,
error_z_hist
,
'
k--
'
,
label
=
"
Gadget-2
"
)
plt
.
plot
([
median_z
,
median_z
],
[
1.8
,
2
],
'
k-
'
,
lw
=
1
)
plt
.
plot
([
per95_z
,
per95_z
],
[
1.8
,
2
],
'
k:
'
,
lw
=
1
)
# Plot the different histograms
for
i
in
range
(
num_order
-
1
,
-
1
,
-
1
):
data
=
np
.
loadtxt
(
order_list
[
i
])
ids
=
data
[:,
0
]
pos
=
data
[:,
1
:
4
]
a_exact
=
data
[:,
4
:
7
]
a_grav
=
data
[:,
7
:
10
]
# Sort stuff
sort_index
=
np
.
argsort
(
ids
)
ids
=
ids
[
sort_index
]
pos
=
pos
[
sort_index
,
:]
a_exact
=
a_exact
[
sort_index
,
:]
a_grav
=
a_grav
[
sort_index
,
:]
# Cross-checks
if
not
np
.
array_equal
(
ids
,
gadget2_ids
):
print
"
Comparing different IDs !
"
if
np
.
max
(
np
.
abs
(
pos
-
gadget2_pos
)
/
np
.
abs
(
gadget2_pos
))
>
1e-6
:
print
"
Comparing different positions ! max difference:
"
index
=
np
.
argmax
(
pos
[:,
0
]
**
2
+
pos
[:,
1
]
**
2
+
pos
[:,
2
]
**
2
-
gadget2_pos
[:,
0
]
**
2
-
gadget2_pos
[:,
1
]
**
2
-
gadget2_pos
[:,
2
]
**
2
)
print
"
Gadget2 (id=%d):
"
%
gadget2_ids
[
index
],
gadget2_pos
[
index
,:],
"
SWIFT (id=%d):
"
%
ids
[
index
],
pos
[
index
,:],
"
\n
"
if
np
.
max
(
np
.
abs
(
a_exact
-
gadget2_a_exact
)
/
np
.
abs
(
gadget2_a_exact
))
>
2e-6
:
print
"
Comparing different exact accelerations ! max difference:
"
index
=
np
.
argmax
(
a_exact
[:,
0
]
**
2
+
a_exact
[:,
1
]
**
2
+
a_exact
[:,
2
]
**
2
-
gadget2_a_exact
[:,
0
]
**
2
-
gadget2_a_exact
[:,
1
]
**
2
-
gadget2_a_exact
[:,
2
]
**
2
)
print
"
a_exact --- Gadget2:
"
,
gadget2_a_exact
[
index
,:],
"
SWIFT:
"
,
a_exact
[
index
,:]
print
"
a_grav --- Gadget2:
"
,
gadget2_a_grav
[
index
,:],
"
SWIFT:
"
,
a_grav
[
index
,:],
"
\n
"
print
"
pos --- Gadget2: (id=%d):
"
%
gadget2_ids
[
index
],
gadget2_pos
[
index
,:],
"
SWIFT (id=%d):
"
%
ids
[
index
],
pos
[
index
,:],
"
\n
"
# Compute the error norm
diff
=
a_exact
-
a_grav
norm_diff
=
np
.
sqrt
(
diff
[:,
0
]
**
2
+
diff
[:,
1
]
**
2
+
diff
[:,
2
]
**
2
)
norm_a
=
np
.
sqrt
(
a_exact
[:,
0
]
**
2
+
a_exact
[:,
1
]
**
2
+
a_exact
[:,
2
]
**
2
)
norm_error
=
norm_diff
/
norm_a
error_x
=
abs
(
diff
[:,
0
])
/
norm_a
error_y
=
abs
(
diff
[:,
1
])
/
norm_a
error_z
=
abs
(
diff
[:,
2
])
/
norm_a
# Bin the error
norm_error_hist
,
_
=
np
.
histogram
(
norm_error
,
bins
=
bin_edges
,
density
=
False
)
/
(
np
.
size
(
norm_error
)
*
bin_size
)
error_x_hist
,
_
=
np
.
histogram
(
error_x
,
bins
=
bin_edges
,
density
=
False
)
/
(
np
.
size
(
norm_error
)
*
bin_size
)
error_y_hist
,
_
=
np
.
histogram
(
error_y
,
bins
=
bin_edges
,
density
=
False
)
/
(
np
.
size
(
norm_error
)
*
bin_size
)
error_z_hist
,
_
=
np
.
histogram
(
error_z
,
bins
=
bin_edges
,
density
=
False
)
/
(
np
.
size
(
norm_error
)
*
bin_size
)
norm_median
=
np
.
median
(
norm_error
)
median_x
=
np
.
median
(
error_x
)
median_y
=
np
.
median
(
error_y
)
median_z
=
np
.
median
(
error_z
)
norm_per95
=
np
.
percentile
(
norm_error
,
95
)
per95_x
=
np
.
percentile
(
error_x
,
95
)
per95_y
=
np
.
percentile
(
error_y
,
95
)
per95_z
=
np
.
percentile
(
error_z
,
95
)
plt
.
subplot
(
221
)
plt
.
semilogx
(
bins
,
norm_error_hist
,
color
=
cols
[
i
],
label
=
"
SWIFT m-poles order %d
"
%
order
[
i
])
plt
.
plot
([
norm_median
,
norm_median
],
[
2.7
,
3
],
'
-
'
,
color
=
cols
[
i
],
lw
=
1
)
plt
.
plot
([
norm_per95
,
norm_per95
],
[
2.7
,
3
],
'
:
'
,
color
=
cols
[
i
],
lw
=
1
)
plt
.
subplot
(
222
)
plt
.
semilogx
(
bins
,
error_x_hist
,
color
=
cols
[
i
],
label
=
"
SWIFT m-poles order %d
"
%
order
[
i
])
plt
.
plot
([
median_x
,
median_x
],
[
1.8
,
2
],
'
-
'
,
color
=
cols
[
i
],
lw
=
1
)
plt
.
plot
([
per95_x
,
per95_x
],
[
1.8
,
2
],
'
:
'
,
color
=
cols
[
i
],
lw
=
1
)
plt
.
subplot
(
223
)
plt
.
semilogx
(
bins
,
error_y_hist
,
color
=
cols
[
i
],
label
=
"
SWIFT m-poles order %d
"
%
order
[
i
])
plt
.
plot
([
median_y
,
median_y
],
[
1.8
,
2
],
'
-
'
,
color
=
cols
[
i
],
lw
=
1
)
plt
.
plot
([
per95_y
,
per95_y
],
[
1.8
,
2
],
'
:
'
,
color
=
cols
[
i
],
lw
=
1
)
plt
.
subplot
(
224
)
plt
.
semilogx
(
bins
,
error_z_hist
,
color
=
cols
[
i
],
label
=
"
SWIFT m-poles order %d
"
%
order
[
i
])
plt
.
plot
([
median_z
,
median_z
],
[
1.8
,
2
],
'
-
'
,
color
=
cols
[
i
],
lw
=
1
)
plt
.
plot
([
per95_z
,
per95_z
],
[
1.8
,
2
],
'
:
'
,
color
=
cols
[
i
],
lw
=
1
)
plt
.
subplot
(
221
)
plt
.
xlabel
(
"
$|\delta \overrightarrow{a}|/|\overrightarrow{a}_{exact}|$
"
)
plt
.
ylabel
(
"
Density
"
)
plt
.
xlim
(
min_error
,
2
*
max_error
)
plt
.
ylim
(
0
,
3
)
plt
.
legend
(
loc
=
"
upper left
"
)
plt
.
subplot
(
222
)
plt
.
xlabel
(
"
$\delta a_x/|\overrightarrow{a}_{exact}|$
"
)
plt
.
ylabel
(
"
Density
"
)
plt
.
xlim
(
min_error
,
2
*
max_error
)
plt
.
ylim
(
0
,
2
)
#plt.legend(loc="center left")
plt
.
subplot
(
223
)
plt
.
xlabel
(
"
$\delta a_y/|\overrightarrow{a}_{exact}|$
"
)
plt
.
ylabel
(
"
Density
"
)
plt
.
xlim
(
min_error
,
2
*
max_error
)
plt
.
ylim
(
0
,
2
)
#plt.legend(loc="center left")
plt
.
subplot
(
224
)
plt
.
xlabel
(
"
$\delta a_z/|\overrightarrow{a}_{exact}|$
"
)
plt
.
ylabel
(
"
Density
"
)
plt
.
xlim
(
min_error
,
2
*
max_error
)
plt
.
ylim
(
0
,
2
)
#plt.legend(loc="center left")
plt
.
savefig
(
"
gravity_checks_step%d.png
"
%
step
)
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment