Skip to content
Snippets Groups Projects
Commit c4228d9d authored by Matthieu Schaller's avatar Matthieu Schaller
Browse files

Added script to check accuracy of gravity calculation

parent 29a5a7a1
No related branches found
No related tags found
1 merge request!331Gravity multi dt
#!/usr/bin/env python
import sys
import glob
import re
import numpy as np
import matplotlib.pyplot as plt
params = {'axes.labelsize': 14,
'axes.titlesize': 18,
'font.size': 12,
'legend.fontsize': 12,
'xtick.labelsize': 14,
'ytick.labelsize': 14,
'text.usetex': True,
'figure.figsize': (10, 10),
'figure.subplot.left' : 0.06,
'figure.subplot.right' : 0.99 ,
'figure.subplot.bottom' : 0.06 ,
'figure.subplot.top' : 0.985 ,
'figure.subplot.wspace' : 0.14 ,
'figure.subplot.hspace' : 0.14 ,
'lines.markersize' : 6,
'lines.linewidth' : 3.,
'text.latex.unicode': True
}
plt.rcParams.update(params)
plt.rc('font',**{'family':'sans-serif','sans-serif':['Times']})
min_error = 1e-6
max_error = 1e-1
num_bins = 51
# Construct the bins
bin_edges = np.linspace(np.log10(min_error), np.log10(max_error), num_bins + 1)
bin_size = (np.log10(max_error) - np.log10(min_error)) / num_bins
bins = 0.5*(bin_edges[1:] + bin_edges[:-1])
bin_edges = 10**bin_edges
bins = 10**bins
# Colours
cols = ['b', 'g', 'r', 'm']
# Time-step to plot
step = int(sys.argv[1])
# Find the files for the different expansion orders
order_list = glob.glob("gravity_checks_step%d_order*.dat"%step)
num_order = len(order_list)
# Get the multipole orders
order = np.zeros(num_order)
for i in range(num_order):
order[i] = int(order_list[i][26])
# Start the plot
plt.figure()
# Get the Gadget-2 data if existing
gadget2_file_list = glob.glob("forcetest_gadget2.txt")
if len(gadget2_file_list) != 0:
gadget2_data = np.loadtxt(gadget2_file_list[0])
gadget2_ids = gadget2_data[:,0]
gadget2_pos = gadget2_data[:,1:4]
gadget2_a_exact = gadget2_data[:,4:7]
gadget2_a_grav = gadget2_data[:, 7:10]
# Sort stuff
sort_index = np.argsort(gadget2_ids)
gadget2_ids = gadget2_ids[sort_index]
gadget2_pos = gadget2_pos[sort_index, :]
gadget2_a_exact = gadget2_a_exact[sort_index, :]
gadget2_a_grav = gadget2_a_grav[sort_index, :]
# Compute the error norm
diff = gadget2_a_exact - gadget2_a_grav
norm_diff = np.sqrt(diff[:,0]**2 + diff[:,1]**2 + diff[:,2]**2)
norm_a = np.sqrt(gadget2_a_exact[:,0]**2 + gadget2_a_exact[:,1]**2 + gadget2_a_exact[:,2]**2)
norm_error = norm_diff / norm_a
error_x = abs(diff[:,0]) / norm_a
error_y = abs(diff[:,1]) / norm_a
error_z = abs(diff[:,2]) / norm_a
# Bin the error
norm_error_hist,_ = np.histogram(norm_error, bins=bin_edges, density=False) / (np.size(norm_error) * bin_size)
error_x_hist,_ = np.histogram(error_x, bins=bin_edges, density=False) / (np.size(norm_error) * bin_size)
error_y_hist,_ = np.histogram(error_y, bins=bin_edges, density=False) / (np.size(norm_error) * bin_size)
error_z_hist,_ = np.histogram(error_z, bins=bin_edges, density=False) / (np.size(norm_error) * bin_size)
norm_median = np.median(norm_error)
median_x = np.median(error_x)
median_y = np.median(error_y)
median_z = np.median(error_z)
norm_per95 = np.percentile(norm_error,95)
per95_x = np.percentile(error_x,95)
per95_y = np.percentile(error_y,95)
per95_z = np.percentile(error_z,95)
plt.subplot(221)
plt.semilogx(bins, norm_error_hist, 'k--', label="Gadget-2")
plt.plot([norm_median, norm_median], [2.7, 3], 'k-', lw=1)
plt.plot([norm_per95, norm_per95], [2.7, 3], 'k:', lw=1)
plt.subplot(222)
plt.semilogx(bins, error_x_hist, 'k--', label="Gadget-2")
plt.plot([median_x, median_x], [1.8, 2], 'k-', lw=1)
plt.plot([per95_x, per95_x], [1.8, 2], 'k:', lw=1)
plt.subplot(223)
plt.semilogx(bins, error_y_hist, 'k--', label="Gadget-2")
plt.plot([median_y, median_y], [1.8, 2], 'k-', lw=1)
plt.plot([per95_y, per95_y], [1.8, 2], 'k:', lw=1)
plt.subplot(224)
plt.semilogx(bins, error_z_hist, 'k--', label="Gadget-2")
plt.plot([median_z, median_z], [1.8, 2], 'k-', lw=1)
plt.plot([per95_z, per95_z], [1.8, 2], 'k:', lw=1)
# Plot the different histograms
for i in range(num_order-1, -1, -1):
data = np.loadtxt(order_list[i])
ids = data[:,0]
pos = data[:,1:4]
a_exact = data[:,4:7]
a_grav = data[:, 7:10]
# Sort stuff
sort_index = np.argsort(ids)
ids = ids[sort_index]
pos = pos[sort_index, :]
a_exact = a_exact[sort_index, :]
a_grav = a_grav[sort_index, :]
# Cross-checks
if not np.array_equal(ids, gadget2_ids):
print "Comparing different IDs !"
if np.max(np.abs(pos - gadget2_pos)/np.abs(gadget2_pos)) > 1e-6:
print "Comparing different positions ! max difference:"
index = np.argmax(pos[:,0]**2 + pos[:,1]**2 + pos[:,2]**2 - gadget2_pos[:,0]**2 - gadget2_pos[:,1]**2 - gadget2_pos[:,2]**2)
print "Gadget2 (id=%d):"%gadget2_ids[index], gadget2_pos[index,:], "SWIFT (id=%d):"%ids[index], pos[index,:], "\n"
if np.max(np.abs(a_exact - gadget2_a_exact) / np.abs(gadget2_a_exact)) > 2e-6:
print "Comparing different exact accelerations ! max difference:"
index = np.argmax(a_exact[:,0]**2 + a_exact[:,1]**2 + a_exact[:,2]**2 - gadget2_a_exact[:,0]**2 - gadget2_a_exact[:,1]**2 - gadget2_a_exact[:,2]**2)
print "a_exact --- Gadget2:", gadget2_a_exact[index,:], "SWIFT:", a_exact[index,:]
print "a_grav --- Gadget2:", gadget2_a_grav[index,:], "SWIFT:", a_grav[index,:],"\n"
print "pos --- Gadget2: (id=%d):"%gadget2_ids[index], gadget2_pos[index,:], "SWIFT (id=%d):"%ids[index], pos[index,:],"\n"
# Compute the error norm
diff = a_exact - a_grav
norm_diff = np.sqrt(diff[:,0]**2 + diff[:,1]**2 + diff[:,2]**2)
norm_a = np.sqrt(a_exact[:,0]**2 + a_exact[:,1]**2 + a_exact[:,2]**2)
norm_error = norm_diff / norm_a
error_x = abs(diff[:,0]) / norm_a
error_y = abs(diff[:,1]) / norm_a
error_z = abs(diff[:,2]) / norm_a
# Bin the error
norm_error_hist,_ = np.histogram(norm_error, bins=bin_edges, density=False) / (np.size(norm_error) * bin_size)
error_x_hist,_ = np.histogram(error_x, bins=bin_edges, density=False) / (np.size(norm_error) * bin_size)
error_y_hist,_ = np.histogram(error_y, bins=bin_edges, density=False) / (np.size(norm_error) * bin_size)
error_z_hist,_ = np.histogram(error_z, bins=bin_edges, density=False) / (np.size(norm_error) * bin_size)
norm_median = np.median(norm_error)
median_x = np.median(error_x)
median_y = np.median(error_y)
median_z = np.median(error_z)
norm_per95 = np.percentile(norm_error,95)
per95_x = np.percentile(error_x,95)
per95_y = np.percentile(error_y,95)
per95_z = np.percentile(error_z,95)
plt.subplot(221)
plt.semilogx(bins, norm_error_hist, color=cols[i],label="SWIFT m-poles order %d"%order[i])
plt.plot([norm_median, norm_median], [2.7, 3],'-', color=cols[i], lw=1)
plt.plot([norm_per95, norm_per95], [2.7, 3],':', color=cols[i], lw=1)
plt.subplot(222)
plt.semilogx(bins, error_x_hist, color=cols[i],label="SWIFT m-poles order %d"%order[i])
plt.plot([median_x, median_x], [1.8, 2],'-', color=cols[i], lw=1)
plt.plot([per95_x, per95_x], [1.8, 2],':', color=cols[i], lw=1)
plt.subplot(223)
plt.semilogx(bins, error_y_hist, color=cols[i],label="SWIFT m-poles order %d"%order[i])
plt.plot([median_y, median_y], [1.8, 2],'-', color=cols[i], lw=1)
plt.plot([per95_y, per95_y], [1.8, 2],':', color=cols[i], lw=1)
plt.subplot(224)
plt.semilogx(bins, error_z_hist, color=cols[i],label="SWIFT m-poles order %d"%order[i])
plt.plot([median_z, median_z], [1.8, 2],'-', color=cols[i], lw=1)
plt.plot([per95_z, per95_z], [1.8, 2],':', color=cols[i], lw=1)
plt.subplot(221)
plt.xlabel("$|\delta \overrightarrow{a}|/|\overrightarrow{a}_{exact}|$")
plt.ylabel("Density")
plt.xlim(min_error, 2*max_error)
plt.ylim(0,3)
plt.legend(loc="upper left")
plt.subplot(222)
plt.xlabel("$\delta a_x/|\overrightarrow{a}_{exact}|$")
plt.ylabel("Density")
plt.xlim(min_error, 2*max_error)
plt.ylim(0,2)
#plt.legend(loc="center left")
plt.subplot(223)
plt.xlabel("$\delta a_y/|\overrightarrow{a}_{exact}|$")
plt.ylabel("Density")
plt.xlim(min_error, 2*max_error)
plt.ylim(0,2)
#plt.legend(loc="center left")
plt.subplot(224)
plt.xlabel("$\delta a_z/|\overrightarrow{a}_{exact}|$")
plt.ylabel("Density")
plt.xlim(min_error, 2*max_error)
plt.ylim(0,2)
#plt.legend(loc="center left")
plt.savefig("gravity_checks_step%d.png"%step)
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment