Skip to content
Snippets Groups Projects
Commit c34bbd97 authored by Matthieu Schaller's avatar Matthieu Schaller
Browse files

Added the 1D Noh problem and solution script

parent 4713e6d4
No related branches found
No related tags found
No related merge requests found
#!/bin/bash
wget http://virgodb.cosma.dur.ac.uk/swift-webstorage/ICs/glassPlane_128.hdf5
###############################################################################
# This file is part of SWIFT.
# Copyright (c) 2016 Matthieu Schaller (matthieu.schaller@durham.ac.uk)
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published
# by the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
##############################################################################
import h5py
from numpy import *
# Generates a swift IC file for the 2D Sod Shock in a periodic box
# Parameters
gamma = 5./3. # Gas adiabatic index
gamma = 5./3. # Gas adiabatic index
rho0 = 1. # Background density
P0 = 1.e-6 # Background pressure
fileName = "noh.hdf5"
#---------------------------------------------------
glass = h5py.File("glassPlane_128.hdf5", "r")
vol = 4.
pos = glass["/PartType0/Coordinates"][:,:] * sqrt(vol)
h = glass["/PartType0/SmoothingLength"][:] * sqrt(vol)
numPart = size(h)
# Generate extra arrays
v = zeros((numPart, 3))
ids = linspace(1, numPart, numPart)
m = zeros(numPart)
u = zeros(numPart)
m[:] = rho0 * vol / numPart
u[:] = P0 / (rho0 * (gamma - 1))
# Make radial velocities
#r = sqrt((pos[:,0]-1.)**2 + (pos[:,1]-1.)**2)
#theta = arctan2((pos[:,1]-1.), (pos[:,0]-1.))
v[:,0] = -(pos[:,0] - 1.)
v[:,1] = -(pos[:,1] - 1.)
norm_v = sqrt(v[:,0]**2 + v[:,1]**2)
v[:,0] /= norm_v
v[:,1] /= norm_v
#File
file = h5py.File(fileName, 'w')
# Header
grp = file.create_group("/Header")
grp.attrs["BoxSize"] = [sqrt(vol), sqrt(vol), 1.]
grp.attrs["NumPart_Total"] = [numPart, 0, 0, 0, 0, 0]
grp.attrs["NumPart_Total_HighWord"] = [0, 0, 0, 0, 0, 0]
grp.attrs["NumPart_ThisFile"] = [numPart, 0, 0, 0, 0, 0]
grp.attrs["Time"] = 0.0
grp.attrs["NumFilesPerSnapshot"] = 1
grp.attrs["MassTable"] = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
grp.attrs["Flag_Entropy_ICs"] = 0
grp.attrs["Dimension"] = 2
#Runtime parameters
grp = file.create_group("/RuntimePars")
grp.attrs["PeriodicBoundariesOn"] = 1
#Units
grp = file.create_group("/Units")
grp.attrs["Unit length in cgs (U_L)"] = 1.
grp.attrs["Unit mass in cgs (U_M)"] = 1.
grp.attrs["Unit time in cgs (U_t)"] = 1.
grp.attrs["Unit current in cgs (U_I)"] = 1.
grp.attrs["Unit temperature in cgs (U_T)"] = 1.
#Particle group
grp = file.create_group("/PartType0")
grp.create_dataset('Coordinates', data=pos, dtype='d')
grp.create_dataset('Velocities', data=v, dtype='f')
grp.create_dataset('Masses', data=m, dtype='f')
grp.create_dataset('SmoothingLength', data=h, dtype='f')
grp.create_dataset('InternalEnergy', data=u, dtype='f')
grp.create_dataset('ParticleIDs', data=ids, dtype='L')
file.close()
# Define the system of units to use internally.
InternalUnitSystem:
UnitMass_in_cgs: 1 # Grams
UnitLength_in_cgs: 1 # Centimeters
UnitVelocity_in_cgs: 1 # Centimeters per second
UnitCurrent_in_cgs: 1 # Amperes
UnitTemp_in_cgs: 1 # Kelvin
# Parameters governing the time integration
TimeIntegration:
time_begin: 0. # The starting time of the simulation (in internal units).
time_end: 0.6 # The end time of the simulation (in internal units).
dt_min: 1e-7 # The minimal time-step size of the simulation (in internal units).
dt_max: 1e-3 # The maximal time-step size of the simulation (in internal units).
# Parameters governing the snapshots
Snapshots:
basename: noh # Common part of the name of output files
time_first: 0. # Time of the first output (in internal units)
delta_time: 5e-2 # Time difference between consecutive outputs (in internal units)
# Parameters governing the conserved quantities statistics
Statistics:
delta_time: 1e-5 # Time between statistics output
# Parameters for the hydrodynamics scheme
SPH:
resolution_eta: 1.2348 # Target smoothing length in units of the mean inter-particle separation (1.2348 == 48Ngbs with the cubic spline kernel).
delta_neighbours: 0.1 # The tolerance for the targetted number of neighbours.
CFL_condition: 0.1 # Courant-Friedrich-Levy condition for time integration.
# Parameters related to the initial conditions
InitialConditions:
file_name: ./noh.hdf5 # The file to read
###############################################################################
# This file is part of SWIFT.
# Copyright (c) 2016 Matthieu Schaller (matthieu.schaller@durham.ac.uk)
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published
# by the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
##############################################################################
# Computes the analytical solution of the Noh problem and plots the SPH answer
# Parameters
gas_gamma = 5./3. # Polytropic index
rho0 = 1. # Background density
P0 = 1.e-6 # Background pressure
v0 = 1
import matplotlib
matplotlib.use("Agg")
from pylab import *
import h5py
# Plot parameters
params = {'axes.labelsize': 10,
'axes.titlesize': 10,
'font.size': 12,
'legend.fontsize': 12,
'xtick.labelsize': 10,
'ytick.labelsize': 10,
'text.usetex': True,
'figure.figsize' : (9.90,6.45),
'figure.subplot.left' : 0.045,
'figure.subplot.right' : 0.99,
'figure.subplot.bottom' : 0.05,
'figure.subplot.top' : 0.99,
'figure.subplot.wspace' : 0.15,
'figure.subplot.hspace' : 0.12,
'lines.markersize' : 6,
'lines.linewidth' : 3.,
'text.latex.unicode': True
}
rcParams.update(params)
rc('font',**{'family':'sans-serif','sans-serif':['Times']})
snap = int(sys.argv[1])
# Read the simulation data
sim = h5py.File("noh_%03d.hdf5"%snap, "r")
boxSize = sim["/Header"].attrs["BoxSize"][0]
time = sim["/Header"].attrs["Time"][0]
scheme = sim["/HydroScheme"].attrs["Scheme"]
kernel = sim["/HydroScheme"].attrs["Kernel function"]
neighbours = sim["/HydroScheme"].attrs["Kernel target N_ngb"]
eta = sim["/HydroScheme"].attrs["Kernel eta"]
git = sim["Code"].attrs["Git Revision"]
x = sim["/PartType0/Coordinates"][:,0]
y = sim["/PartType0/Coordinates"][:,1]
vx = sim["/PartType0/Velocities"][:,0]
vy = sim["/PartType0/Velocities"][:,1]
u = sim["/PartType0/InternalEnergy"][:]
S = sim["/PartType0/Entropy"][:]
P = sim["/PartType0/Pressure"][:]
rho = sim["/PartType0/Density"][:]
r = np.sqrt((x-1)**2 + (y-1)**2)
v = -np.sqrt(vx**2 + vy**2)
N = 1000 # Number of points
x_min = -1
x_max = 1
#x += x_min
# ---------------------------------------------------------------
# Don't touch anything after this.
# ---------------------------------------------------------------
x_s = np.arange(0, 2., 2./N) - 1.
rho_s = np.ones(N) * rho0
P_s = np.ones(N) * rho0
v_s = np.ones(N) * v0
# Shock position
u0 = rho0 * P0 * (gas_gamma-1)
us = 0.5 * (gas_gamma - 1) * v0
rs = us * time
# Post-shock values
rho_s[np.abs(x_s) < rs] = rho0 * ((gas_gamma + 1) / (gas_gamma - 1))**2
P_s[np.abs(x_s) < rs] = 0.5 * rho0 * v0**2 * (gas_gamma + 1)**2 / (gas_gamma-1)
v_s[np.abs(x_s) < rs] = 0.
# Pre-shock values
rho_s[np.abs(x_s) >= rs] = rho0 * (1 + v0 * time/np.abs(x_s[np.abs(x_s) >=rs]))
P_s[np.abs(x_s) >= rs] = 0
v_s[x_s >= rs] = -v0
v_s[x_s <= -rs] = v0
# Additional arrays
u_s = P_s / (rho_s * (gas_gamma - 1.)) #internal energy
s_s = P_s / rho_s**gas_gamma # entropic function
# Plot the interesting quantities
figure()
# Velocity profile --------------------------------
subplot(231)
plot(r, v, '.', color='r', ms=4.0)
plot(x_s, v_s, '--', color='k', alpha=0.8, lw=1.2)
xlabel("${\\rm{Radius}}~r$", labelpad=0)
ylabel("${\\rm{Velocity}}~v_r$", labelpad=-4)
xlim(0, 0.5)
ylim(-1.2, 0.4)
# Density profile --------------------------------
subplot(232)
plot(r, rho, '.', color='r', ms=4.0)
plot(x_s, rho_s, '--', color='k', alpha=0.8, lw=1.2)
xlabel("${\\rm{Radius}}~r$", labelpad=0)
ylabel("${\\rm{Density}}~\\rho$", labelpad=0)
xlim(0, 0.5)
ylim(0.95, 19)
# Pressure profile --------------------------------
subplot(233)
plot(r, P, '.', color='r', ms=4.0)
plot(x_s, P_s, '--', color='k', alpha=0.8, lw=1.2)
xlabel("${\\rm{Radius}}~r$", labelpad=0)
ylabel("${\\rm{Pressure}}~P$", labelpad=0)
xlim(0, 0.5)
ylim(-0.5, 11)
# Internal energy profile -------------------------
subplot(234)
plot(r, u, '.', color='r', ms=4.0)
plot(x_s, u_s, '--', color='k', alpha=0.8, lw=1.2)
xlabel("${\\rm{Radius}}~r$", labelpad=0)
ylabel("${\\rm{Internal~Energy}}~u$", labelpad=0)
xlim(0, 0.5)
ylim(-0.05, 0.8)
# Entropy profile ---------------------------------
subplot(235)
plot(r, S, '.', color='r', ms=4.0)
plot(x_s, s_s, '--', color='k', alpha=0.8, lw=1.2)
xlabel("${\\rm{Radius}}~r$", labelpad=0)
ylabel("${\\rm{Entropy}}~S$", labelpad=-9)
xlim(0, 0.5)
ylim(-0.05, 0.2)
# Information -------------------------------------
subplot(236, frameon=False)
text(-0.49, 0.9, "Noh problem with $\\gamma=%.3f$ in 2D at $t=%.2f$"%(gas_gamma,time), fontsize=10)
plot([-0.49, 0.1], [0.62, 0.62], 'k-', lw=1)
text(-0.49, 0.5, "$\\textsc{Swift}$ %s"%git, fontsize=10)
text(-0.49, 0.4, scheme, fontsize=10)
text(-0.49, 0.3, kernel, fontsize=10)
text(-0.49, 0.2, "$%.2f$ neighbours ($\\eta=%.3f$)"%(neighbours, eta), fontsize=10)
xlim(-0.5, 0.5)
ylim(0, 1)
xticks([])
yticks([])
savefig("Noh.png", dpi=200)
#!/bin/bash
# Generate the initial conditions if they are not present.
if [ ! -e glassPlane_128.hdf5 ]
then
echo "Fetching initial glass file for the Noh problem..."
./getGlass.sh
fi
if [ ! -e noh.hdf5 ]
then
echo "Generating initial conditions for the Noh problem..."
python makeIC.py
fi
# Run SWIFT
../swift -s -t 2 noh.yml 2>&1 | tee output.log
# Plot the solution
python plotSolution.py 12
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment