Commit c0205edb authored by Bert Vandenbroucke's avatar Bert Vandenbroucke
Browse files

Added scripts for a SineWavePotential test version with an ideal gas equation of state (in 1D).

parent 653a1eb8
###############################################################################
# This file is part of SWIFT.
# Copyright (c) 2017 Bert Vandenbroucke (bert.vandenbroucke@gmail.com)
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published
# by the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
##############################################################################
# Generates a distorted 1D grid with a density profile that balances out the
# external sine wave potential if run with an isothermal equation of state.
import numpy as np
import h5py
# constant thermal energy
# the definition below assumes the same thermal energy is defined in const.h,
# and also that the code was configured with an adiabatic index of 5./3.
uconst = 20.2615290634
cs2 = 2.*uconst/3.
A = 10.
fileName = "sineWavePotential.hdf5"
numPart = 100
boxSize = 1.
coords = np.zeros((numPart, 3))
v = np.zeros((numPart, 3))
m = np.zeros(numPart) + 1.
h = np.zeros(numPart) + 2./numPart
u = np.zeros(numPart)
ids = np.arange(numPart, dtype = 'L')
rho = np.zeros(numPart)
# first set the positions, as we try to do a reasonable volume estimate to
# set the masses
for i in range(numPart):
coords[i,0] = (i+0.5)/numPart
V = 1./numPart
for i in range(numPart):
rho[i] = 1000.
u[i] = 1.5*(-0.5*A/np.pi*np.cos(2.*np.pi*coords[i,0]) + 2.*A)
m[i] = rho[i]*V
#File
file = h5py.File(fileName, 'w')
# Header
grp = file.create_group("/Header")
grp.attrs["BoxSize"] = boxSize
grp.attrs["NumPart_Total"] = [numPart, 0, 0, 0, 0, 0]
grp.attrs["NumPart_Total_HighWord"] = [0, 0, 0, 0, 0, 0]
grp.attrs["NumPart_ThisFile"] = [numPart, 0, 0, 0, 0, 0]
grp.attrs["Time"] = 0.0
grp.attrs["NumFilesPerSnapshot"] = 1
grp.attrs["MassTable"] = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
grp.attrs["Flag_Entropy_ICs"] = 0
grp.attrs["Dimension"] = 1
#Runtime parameters
grp = file.create_group("/RuntimePars")
grp.attrs["PeriodicBoundariesOn"] = 1
#Units
grp = file.create_group("/Units")
grp.attrs["Unit length in cgs (U_L)"] = 1.
grp.attrs["Unit mass in cgs (U_M)"] = 1.
grp.attrs["Unit time in cgs (U_t)"] = 1.
grp.attrs["Unit current in cgs (U_I)"] = 1.
grp.attrs["Unit temperature in cgs (U_T)"] = 1.
#Particle group
grp = file.create_group("/PartType0")
grp.create_dataset('Coordinates', data=coords, dtype='d')
grp.create_dataset('Velocities', data=v, dtype='f')
grp.create_dataset('Masses', data=m, dtype='f')
grp.create_dataset('SmoothingLength', data=h, dtype='f')
grp.create_dataset('InternalEnergy', data=u, dtype='f')
grp.create_dataset('ParticleIDs', data=ids, dtype='L')
grp.create_dataset('Density', data=rho, dtype='f')
file.close()
###############################################################################
# This file is part of SWIFT.
# Copyright (c) 2017 Bert Vandenbroucke (bert.vandenbroucke@gmail.com)
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published
# by the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
##############################################################################
# Plots some quantities for the snapshot file which is passed on as a command
# line argument (full name)
import numpy as np
import h5py
import sys
import pylab as pl
# these should be the same as in makeIC.py
uconst = 20.2615290634
cs2 = 2.*uconst/3.
A = 10.
if len(sys.argv) < 2:
print "Need to provide a filename argument!"
exit()
fileName = sys.argv[1]
file = h5py.File(fileName, 'r')
coords = np.array(file["/PartType0/Coordinates"])
rho = np.array(file["/PartType0/Density"])
u = np.array(file["/PartType0/InternalEnergy"])
agrav = np.array(file["/PartType0/GravAcceleration"])
m = np.array(file["/PartType0/Masses"])
ids = np.array(file["/PartType0/ParticleIDs"])
P = 2.*rho*u/3.
ids_reverse = np.argsort(ids)
gradP = np.zeros(P.shape)
for i in range(len(P)):
iself = int(ids[i])
corr = 0.
im1 = iself-1
if im1 < 0:
im1 = len(P)-1
corr = 1.
ip1 = iself+1
if ip1 == len(P):
ip1 = 0
corr = 1.
idxp1 = ids_reverse[ip1]
idxm1 = ids_reverse[im1]
gradP[i] = (P[idxp1]-P[idxm1])/(coords[idxp1,0]-coords[idxm1,0])
fig, ax = pl.subplots(2, 2)
ax[0][0].plot(coords[:,0], rho, "r.", markersize = 0.5)
ax[0][1].plot(coords[:,0], gradP/rho, "b.")
ax[1][0].plot(coords[:,0], agrav[:,0], "g.", markersize = 0.5)
ax[1][1].plot(coords[:,0], m, "y.")
pl.savefig("{fileName}.png".format(fileName = fileName[:-5]))
#!/bin/bash
if [ ! -e sineWavePotential.hdf5 ]
then
echo "Generating initial conditions for the 1D SineWavePotential example..."
python makeIC_ideal.py
fi
../swift -g -s -t 2 sineWavePotential.yml 2>&1 | tee output.log
for f in sineWavePotential_*.hdf5
do
python plotSolution_ideal.py $f
done
Supports Markdown
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment