Skip to content
Snippets Groups Projects
Commit b8e7f90a authored by Matthieu Schaller's avatar Matthieu Schaller
Browse files

Added the Kelvin-Helmholtz instability test

parent 35a653b7
No related branches found
No related tags found
No related merge requests found
############################################################################### ###############################################################################
# This file is part of SWIFT. # This file is part of SWIFT.
# Copyright (c) 2012 Pedro Gonnet (pedro.gonnet@durham.ac.uk), # Copyright (c) 2016 Matthieu Schaller (matthieu.schaller@durham.ac.uk)
# Matthieu Schaller (matthieu.schaller@durham.ac.uk)
# #
# This program is free software: you can redistribute it and/or modify # This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published # it under the terms of the GNU Lesser General Public License as published
...@@ -19,7 +18,6 @@ ...@@ -19,7 +18,6 @@
############################################################################## ##############################################################################
import h5py import h5py
import random
from numpy import * from numpy import *
import sys import sys
...@@ -51,7 +49,6 @@ for i in range(numPart): ...@@ -51,7 +49,6 @@ for i in range(numPart):
x = coords[i,0] x = coords[i,0]
y = coords[i,1] y = coords[i,1]
z = coords[i,2]
r2 = (x - boxSize / 2)**2 + (y - boxSize / 2)**2 r2 = (x - boxSize / 2)**2 + (y - boxSize / 2)**2
r = sqrt(r2) r = sqrt(r2)
......
# Define the system of units to use internally.
InternalUnitSystem:
UnitMass_in_cgs: 1 # Grams
UnitLength_in_cgs: 1 # Centimeters
UnitVelocity_in_cgs: 1 # Centimeters per second
UnitCurrent_in_cgs: 1 # Amperes
UnitTemp_in_cgs: 1 # Kelvin
# Parameters governing the time integration
TimeIntegration:
time_begin: 0. # The starting time of the simulation (in internal units).
time_end: 1.5 # The end time of the simulation (in internal units).
dt_min: 1e-6 # The minimal time-step size of the simulation (in internal units).
dt_max: 1e-2 # The maximal time-step size of the simulation (in internal units).
# Parameters governing the snapshots
Snapshots:
basename: kelvinHelmholtz # Common part of the name of output files
time_first: 0. # Time of the first output (in internal units)
delta_time: 0.25 # Time difference between consecutive outputs (in internal units)
# Parameters governing the conserved quantities statistics
Statistics:
delta_time: 1e-2 # Time between statistics output
# Parameters for the hydrodynamics scheme
SPH:
resolution_eta: 1.2348 # Target smoothing length in units of the mean inter-particle separation (1.2348 == 48Ngbs with the cubic spline kernel).
delta_neighbours: 0.1 # The tolerance for the targetted number of neighbours.
max_smoothing_length: 0.01 # Maximal smoothing length allowed (in internal units).
CFL_condition: 0.1 # Courant-Friedrich-Levy condition for time integration.
# Parameters related to the initial conditions
InitialConditions:
file_name: ./kelvinHelmholtz.hdf5 # The file to read
###############################################################################
# This file is part of SWIFT.
# Copyright (c) 2016 Matthieu Schaller (matthieu.schaller@durham.ac.uk)
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published
# by the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
##############################################################################
import h5py
from numpy import *
import sys
# Generates a swift IC file for the Kelvin-Helmholtz vortex in a periodic box
# Parameters
L2 = 128 # Particles along one edge in the low-density region
gamma = 5./3. # Gas adiabatic index
P1 = 2.5 # Central region pressure
P2 = 2.5 # Outskirts pressure
v1 = 0.5 # Central region velocity
v2 = -0.5 # Outskirts vlocity
rho1 = 2 # Central density
rho2 = 1 # Outskirts density
omega0 = 0.1
sigma = 0.05 / sqrt(2)
fileOutputName = "kelvinHelmholtz.hdf5"
#---------------------------------------------------
# Start by generating grids of particles at the two densities
numPart2 = L2 * L2
L1 = int(sqrt(numPart2 / rho2 * rho1))
numPart1 = L1 * L1
#print "N2 =", numPart2, "N1 =", numPart1
#print "L2 =", L2, "L1 = ", L1
#print "rho2 =", rho2, "rho1 =", (float(L1*L1)) / (float(L2*L2))
coords1 = zeros((numPart1, 3))
coords2 = zeros((numPart2, 3))
h1 = ones(numPart1) * 1.2348 / L1
h2 = ones(numPart2) * 1.2348 / L2
m1 = zeros(numPart1)
m2 = zeros(numPart2)
u1 = zeros(numPart1)
u2 = zeros(numPart2)
vel1 = zeros((numPart1, 3))
vel2 = zeros((numPart2, 3))
# Particles in the central region
for i in range(L1):
for j in range(L1):
index = i * L1 + j
x = i / float(L1) + 1. / (2. * L1)
y = j / float(L1) + 1. / (2. * L1)
coords1[index, 0] = x
coords1[index, 1] = y
u1[index] = P1 / (rho1 * (gamma-1.))
vel1[index, 0] = v1
# Particles in the outskirts
for i in range(L2):
for j in range(L2):
index = i * L2 + j
x = i / float(L2) + 1. / (2. * L2)
y = j / float(L2) + 1. / (2. * L2)
coords2[index, 0] = x
coords2[index, 1] = y
u2[index] = P2 / (rho2 * (gamma-1.))
vel2[index, 0] = v2
# Now concatenate arrays
where1 = abs(coords1[:,1]-0.5) < 0.25
where2 = abs(coords2[:,1]-0.5) > 0.25
coords = append(coords1[where1, :], coords2[where2, :], axis=0)
#print L2*(L2/2), L1*(L1/2)
#print shape(coords), shape(coords1[where1,:]), shape(coords2[where2,:])
#print shape(coords), shape(logical_not(coords1[where1,:])), shape(logical_not(coords2[where2,:]))
vel = append(vel1[where1, :], vel2[where2, :], axis=0)
h = append(h1[where1], h2[where2], axis=0)
m = append(m1[where1], m2[where2], axis=0)
u = append(u1[where1], u2[where2], axis=0)
numPart = size(h)
ids = linspace(1, numPart, numPart)
m[:] = (0.5 * rho1 + 0.5 * rho2) / float(numPart)
# Velocity perturbation
vel[:,1] = omega0 * sin(4*pi*coords[:,0]) * (exp(-(coords[:,1]-0.25)**2 / (2 * sigma**2)) + exp(-(coords[:,1]-0.75)**2 / (2 * sigma**2)))
#File
fileOutput = h5py.File(fileOutputName, 'w')
# Header
grp = fileOutput.create_group("/Header")
grp.attrs["BoxSize"] = [1., 1., 0.1]
grp.attrs["NumPart_Total"] = [numPart, 0, 0, 0, 0, 0]
grp.attrs["NumPart_Total_HighWord"] = [0, 0, 0, 0, 0, 0]
grp.attrs["NumPart_ThisFile"] = [numPart, 0, 0, 0, 0, 0]
grp.attrs["Time"] = 0.0
grp.attrs["NumFileOutputsPerSnapshot"] = 1
grp.attrs["MassTable"] = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
grp.attrs["Flag_Entropy_ICs"] = [0, 0, 0, 0, 0, 0]
#Runtime parameters
grp = fileOutput.create_group("/RuntimePars")
grp.attrs["PeriodicBoundariesOn"] = 1
#Units
grp = fileOutput.create_group("/Units")
grp.attrs["Unit length in cgs (U_L)"] = 1.
grp.attrs["Unit mass in cgs (U_M)"] = 1.
grp.attrs["Unit time in cgs (U_t)"] = 1.
grp.attrs["Unit current in cgs (U_I)"] = 1.
grp.attrs["Unit temperature in cgs (U_T)"] = 1.
#Particle group
grp = fileOutput.create_group("/PartType0")
ds = grp.create_dataset('Coordinates', (numPart, 3), 'd')
ds[()] = coords
ds = grp.create_dataset('Velocities', (numPart, 3), 'f')
ds[()] = vel
ds = grp.create_dataset('Masses', (numPart, 1), 'f')
ds[()] = m.reshape((numPart,1))
ds = grp.create_dataset('SmoothingLength', (numPart,1), 'f')
ds[()] = h.reshape((numPart,1))
ds = grp.create_dataset('InternalEnergy', (numPart,1), 'f')
ds[()] = u.reshape((numPart,1))
ds = grp.create_dataset('ParticleIDs', (numPart,1), 'L')
ds[()] = ids.reshape((numPart,1))
fileOutput.close()
###############################################################################
# This file is part of SWIFT.
# Copyright (c) 2016 Matthieu Schaller (matthieu.schaller@durham.ac.uk)
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published
# by the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
##############################################################################
# Computes the analytical solution of the Gresho-Chan vortex and plots the SPH answer
# Parameters
gas_gamma = 5./3. # Gas adiabatic index
P1 = 2.5 # Central region pressure
P2 = 2.5 # Outskirts pressure
v1 = 0.5 # Central region velocity
v2 = -0.5 # Outskirts vlocity
rho1 = 2 # Central density
rho2 = 1 # Outskirts density
# ---------------------------------------------------------------
# Don't touch anything after this.
# ---------------------------------------------------------------
import matplotlib
matplotlib.use("Agg")
from pylab import *
import h5py
# Plot parameters
params = {'axes.labelsize': 10,
'axes.titlesize': 10,
'font.size': 12,
'legend.fontsize': 12,
'xtick.labelsize': 10,
'ytick.labelsize': 10,
'text.usetex': True,
'figure.figsize' : (9.90,6.45),
'figure.subplot.left' : 0.045,
'figure.subplot.right' : 0.99,
'figure.subplot.bottom' : 0.05,
'figure.subplot.top' : 0.99,
'figure.subplot.wspace' : 0.15,
'figure.subplot.hspace' : 0.12,
'lines.markersize' : 6,
'lines.linewidth' : 3.,
'text.latex.unicode': True
}
rcParams.update(params)
rc('font',**{'family':'sans-serif','sans-serif':['Times']})
snap = int(sys.argv[1])
# Read the simulation data
sim = h5py.File("kelvinHelmholtz_%03d.hdf5"%snap, "r")
boxSize = sim["/Header"].attrs["BoxSize"][0]
time = sim["/Header"].attrs["Time"][0]
scheme = sim["/HydroScheme"].attrs["Scheme"]
kernel = sim["/HydroScheme"].attrs["Kernel function"]
neighbours = sim["/HydroScheme"].attrs["Kernel target N_ngb"]
eta = sim["/HydroScheme"].attrs["Kernel eta"]
git = sim["Code"].attrs["Git Revision"]
pos = sim["/PartType0/Coordinates"][:,:]
x = pos[:,0] - boxSize / 2
y = pos[:,1] - boxSize / 2
vel = sim["/PartType0/Velocities"][:,:]
v_norm = sqrt(vel[:,0]**2 + vel[:,1]**2)
rho = sim["/PartType0/Density"][:]
u = sim["/PartType0/InternalEnergy"][:]
S = sim["/PartType0/Entropy"][:]
P = sim["/PartType0/Pressure"][:]
# Plot the interesting quantities
figure()
# Azimuthal velocity profile -----------------------------
subplot(231)
scatter(pos[:,0], pos[:,1], c=vel[:,0], cmap="PuBu", edgecolors='face', s=4, vmin=-1., vmax=1.)
text(0.97, 0.97, "${\\rm{Velocity~along}}~x$", ha="right", va="top", backgroundcolor="w")
xlabel("${\\rm{Position}}~x$", labelpad=0)
ylabel("${\\rm{Position}}~y$", labelpad=0)
xlim(0, 1)
ylim(0, 1)
# Radial density profile --------------------------------
subplot(232)
scatter(pos[:,0], pos[:,1], c=rho, cmap="PuBu", edgecolors='face', s=4, vmin=0.8, vmax=2.2)
text(0.97, 0.97, "${\\rm{Density}}$", ha="right", va="top", backgroundcolor="w")
xlabel("${\\rm{Position}}~x$", labelpad=0)
ylabel("${\\rm{Position}}~y$", labelpad=0)
xlim(0, 1)
ylim(0, 1)
# Radial pressure profile --------------------------------
subplot(233)
scatter(pos[:,0], pos[:,1], c=P, cmap="PuBu", edgecolors='face', s=4, vmin=1, vmax=4)
text(0.97, 0.97, "${\\rm{Pressure}}$", ha="right", va="top", backgroundcolor="w")
xlabel("${\\rm{Position}}~x$", labelpad=0)
ylabel("${\\rm{Position}}~y$", labelpad=0)
xlim(0, 1)
ylim(0, 1)
# Internal energy profile --------------------------------
subplot(234)
scatter(pos[:,0], pos[:,1], c=u, cmap="PuBu", edgecolors='face', s=4, vmin=1.5, vmax=5.)
text(0.97, 0.97, "${\\rm{Internal~energy}}$", ha="right", va="top", backgroundcolor="w")
xlabel("${\\rm{Position}}~x$", labelpad=0)
ylabel("${\\rm{Position}}~y$", labelpad=0)
xlim(0, 1)
ylim(0, 1)
# Radial entropy profile --------------------------------
subplot(235)
scatter(pos[:,0], pos[:,1], c=S, cmap="PuBu", edgecolors='face', s=4, vmin=0.5, vmax=3.)
text(0.97, 0.97, "${\\rm{Entropy}}$", ha="right", va="top", backgroundcolor="w")
xlabel("${\\rm{Position}}~x$", labelpad=0)
ylabel("${\\rm{Position}}~y$", labelpad=0)
xlim(0, 1)
ylim(0, 1)
# Image --------------------------------------------------
#subplot(234)
#scatter(pos[:,0], pos[:,1], c=v_norm, cmap="PuBu", edgecolors='face', s=4, vmin=0, vmax=1)
#text(0.95, 0.95, "$|v|$", ha="right", va="top")
#xlim(0,1)
#ylim(0,1)
#xlabel("$x$", labelpad=0)
#ylabel("$y$", labelpad=0)
# Information -------------------------------------
subplot(236, frameon=False)
text(-0.49, 0.9, "Kelvin-Helmholtz instability at $t=%.2f$"%(time), fontsize=10)
text(-0.49, 0.8, "Centre:~~~ $(P, \\rho, v) = (%.3f, %.3f, %.3f)$"%(P1, rho1, v1), fontsize=10)
text(-0.49, 0.7, "Outskirts: $(P, \\rho, v) = (%.3f, %.3f, %.3f)$"%(P2, rho2, v2), fontsize=10)
plot([-0.49, 0.1], [0.62, 0.62], 'k-', lw=1)
text(-0.49, 0.5, "$\\textsc{Swift}$ %s"%git, fontsize=10)
text(-0.49, 0.4, scheme, fontsize=10)
text(-0.49, 0.3, kernel, fontsize=10)
text(-0.49, 0.2, "$%.2f$ neighbours ($\\eta=%.3f$)"%(neighbours, eta), fontsize=10)
xlim(-0.5, 0.5)
ylim(0, 1)
xticks([])
yticks([])
savefig("KelvinHelmholtz.png", dpi=200)
#!/bin/bash
# Generate the initial conditions if they are not present.
if [ ! -e kelvinHelmholtz.hdf5 ]
then
echo "Generating initial conditions for the Kelvin-Helmholtz example..."
python makeIC.py
fi
# Run SWIFT
../swift -s -t 1 kelvinHelmholtz.yml
# Plot the solution
python plotSolution.py 6
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment