Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
SWIFTsim
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Deploy
Releases
Model registry
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
SWIFT
SWIFTsim
Commits
b82a0765
Commit
b82a0765
authored
8 years ago
by
Matthieu Schaller
Browse files
Options
Downloads
Patches
Plain Diff
Removed order 6 and 7 vector powers/gravity derivatives
parent
77e97e01
Branches
Branches containing commit
Tags
Tags containing commit
1 merge request
!328
Gravity multi dt
Changes
2
Expand all
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
src/gravity_derivatives.h
+0
-1566
0 additions, 1566 deletions
src/gravity_derivatives.h
src/vector_power.h
+0
-840
0 additions, 840 deletions
src/vector_power.h
with
0 additions
and
2406 deletions
src/gravity_derivatives.h
+
0
−
1566
View file @
b82a0765
...
...
@@ -1083,1571 +1083,5 @@ __attribute__((always_inline)) INLINE static double D_500(double r_x,
(
r_x
);
/* 26 zero-valued terms not written out */
}
/*********************************/
/* 6th order gravity derivatives */
/*********************************/
/**
* @brief Compute \f$ \frac{\partial^6}{ \partial_z^6 }\phi(x, y, z} \f$.
*
* Note that r_inv = 1./sqrt(r_x^2 + r_y^2 + r_z^2)
*/
__attribute__
((
always_inline
))
INLINE
static
double
D_006
(
double
r_x
,
double
r_y
,
double
r_z
,
double
r_inv
)
{
return
+
10395
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
(
r_z
*
r_z
*
r_z
*
r_z
*
r_z
*
r_z
)
-
945
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
15
.
0
*
(
r_z
*
r_z
*
r_z
*
r_z
)
+
105
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
45
.
0
*
(
r_z
*
r_z
)
-
15
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
15
.
0
;
/* 127 zero-valued terms not written out */
}
/**
* @brief Compute \f$ \frac{\partial^6}{ \partial_y^1 \partial_z^5 }\phi(x, y,
* z} \f$.
*
* Note that r_inv = 1./sqrt(r_x^2 + r_y^2 + r_z^2)
*/
__attribute__
((
always_inline
))
INLINE
static
double
D_015
(
double
r_x
,
double
r_y
,
double
r_z
,
double
r_inv
)
{
return
+
10395
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
(
r_y
*
r_z
*
r_z
*
r_z
*
r_z
*
r_z
)
-
945
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
10
.
0
*
(
r_y
*
r_z
*
r_z
*
r_z
)
+
105
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
15
.
0
*
(
r_y
*
r_z
);
/* 177 zero-valued terms not written out */
}
/**
* @brief Compute \f$ \frac{\partial^6}{ \partial_y^2 \partial_z^4 }\phi(x, y,
* z} \f$.
*
* Note that r_inv = 1./sqrt(r_x^2 + r_y^2 + r_z^2)
*/
__attribute__
((
always_inline
))
INLINE
static
double
D_024
(
double
r_x
,
double
r_y
,
double
r_z
,
double
r_inv
)
{
return
+
10395
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
(
r_y
*
r_y
*
r_z
*
r_z
*
r_z
*
r_z
)
-
945
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
6
.
0
*
(
r_y
*
r_y
*
r_z
*
r_z
)
+
105
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
3
.
0
*
(
r_y
*
r_y
)
-
945
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
(
r_z
*
r_z
*
r_z
*
r_z
)
+
105
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
6
.
0
*
(
r_z
*
r_z
)
-
15
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
3
.
0
;
/* 183 zero-valued terms not written out */
}
/**
* @brief Compute \f$ \frac{\partial^6}{ \partial_y^3 \partial_z^3 }\phi(x, y,
* z} \f$.
*
* Note that r_inv = 1./sqrt(r_x^2 + r_y^2 + r_z^2)
*/
__attribute__
((
always_inline
))
INLINE
static
double
D_033
(
double
r_x
,
double
r_y
,
double
r_z
,
double
r_inv
)
{
return
+
10395
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
(
r_y
*
r_y
*
r_y
*
r_z
*
r_z
*
r_z
)
-
945
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
3
.
0
*
(
r_y
*
r_y
*
r_y
*
r_z
)
-
945
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
3
.
0
*
(
r_y
*
r_z
*
r_z
*
r_z
)
+
105
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
9
.
0
*
(
r_y
*
r_z
);
/* 187 zero-valued terms not written out */
}
/**
* @brief Compute \f$ \frac{\partial^6}{ \partial_y^4 \partial_z^2 }\phi(x, y,
* z} \f$.
*
* Note that r_inv = 1./sqrt(r_x^2 + r_y^2 + r_z^2)
*/
__attribute__
((
always_inline
))
INLINE
static
double
D_042
(
double
r_x
,
double
r_y
,
double
r_z
,
double
r_inv
)
{
return
+
10395
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
(
r_y
*
r_y
*
r_y
*
r_y
*
r_z
*
r_z
)
-
945
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
(
r_y
*
r_y
*
r_y
*
r_y
)
-
945
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
6
.
0
*
(
r_y
*
r_y
*
r_z
*
r_z
)
+
105
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
6
.
0
*
(
r_y
*
r_y
)
+
105
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
3
.
0
*
(
r_z
*
r_z
)
-
15
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
3
.
0
;
/* 183 zero-valued terms not written out */
}
/**
* @brief Compute \f$ \frac{\partial^6}{ \partial_y^5 \partial_z^1 }\phi(x, y,
* z} \f$.
*
* Note that r_inv = 1./sqrt(r_x^2 + r_y^2 + r_z^2)
*/
__attribute__
((
always_inline
))
INLINE
static
double
D_051
(
double
r_x
,
double
r_y
,
double
r_z
,
double
r_inv
)
{
return
+
10395
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
(
r_y
*
r_y
*
r_y
*
r_y
*
r_y
*
r_z
)
-
945
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
10
.
0
*
(
r_y
*
r_y
*
r_y
*
r_z
)
+
105
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
15
.
0
*
(
r_y
*
r_z
);
/* 177 zero-valued terms not written out */
}
/**
* @brief Compute \f$ \frac{\partial^6}{ \partial_y^6 }\phi(x, y, z} \f$.
*
* Note that r_inv = 1./sqrt(r_x^2 + r_y^2 + r_z^2)
*/
__attribute__
((
always_inline
))
INLINE
static
double
D_060
(
double
r_x
,
double
r_y
,
double
r_z
,
double
r_inv
)
{
return
+
10395
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
(
r_y
*
r_y
*
r_y
*
r_y
*
r_y
*
r_y
)
-
945
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
15
.
0
*
(
r_y
*
r_y
*
r_y
*
r_y
)
+
105
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
45
.
0
*
(
r_y
*
r_y
)
-
15
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
15
.
0
;
/* 127 zero-valued terms not written out */
}
/**
* @brief Compute \f$ \frac{\partial^6}{ \partial_x^1 \partial_z^5 }\phi(x, y,
* z} \f$.
*
* Note that r_inv = 1./sqrt(r_x^2 + r_y^2 + r_z^2)
*/
__attribute__
((
always_inline
))
INLINE
static
double
D_105
(
double
r_x
,
double
r_y
,
double
r_z
,
double
r_inv
)
{
return
+
10395
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
(
r_x
*
r_z
*
r_z
*
r_z
*
r_z
*
r_z
)
-
945
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
10
.
0
*
(
r_x
*
r_z
*
r_z
*
r_z
)
+
105
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
15
.
0
*
(
r_x
*
r_z
);
/* 177 zero-valued terms not written out */
}
/**
* @brief Compute \f$ \frac{\partial^6}{ \partial_x^1 \partial_y^1 \partial_z^4
* }\phi(x, y, z} \f$.
*
* Note that r_inv = 1./sqrt(r_x^2 + r_y^2 + r_z^2)
*/
__attribute__
((
always_inline
))
INLINE
static
double
D_114
(
double
r_x
,
double
r_y
,
double
r_z
,
double
r_inv
)
{
return
+
10395
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
(
r_x
*
r_y
*
r_z
*
r_z
*
r_z
*
r_z
)
-
945
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
6
.
0
*
(
r_x
*
r_y
*
r_z
*
r_z
)
+
105
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
3
.
0
*
(
r_x
*
r_y
);
/* 193 zero-valued terms not written out */
}
/**
* @brief Compute \f$ \frac{\partial^6}{ \partial_x^1 \partial_y^2 \partial_z^3
* }\phi(x, y, z} \f$.
*
* Note that r_inv = 1./sqrt(r_x^2 + r_y^2 + r_z^2)
*/
__attribute__
((
always_inline
))
INLINE
static
double
D_123
(
double
r_x
,
double
r_y
,
double
r_z
,
double
r_inv
)
{
return
+
10395
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
(
r_x
*
r_y
*
r_y
*
r_z
*
r_z
*
r_z
)
-
945
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
3
.
0
*
(
r_x
*
r_y
*
r_y
*
r_z
)
-
945
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
(
r_x
*
r_z
*
r_z
*
r_z
)
+
105
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
3
.
0
*
(
r_x
*
r_z
);
/* 195 zero-valued terms not written out */
}
/**
* @brief Compute \f$ \frac{\partial^6}{ \partial_x^1 \partial_y^3 \partial_z^2
* }\phi(x, y, z} \f$.
*
* Note that r_inv = 1./sqrt(r_x^2 + r_y^2 + r_z^2)
*/
__attribute__
((
always_inline
))
INLINE
static
double
D_132
(
double
r_x
,
double
r_y
,
double
r_z
,
double
r_inv
)
{
return
+
10395
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
(
r_x
*
r_y
*
r_y
*
r_y
*
r_z
*
r_z
)
-
945
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
(
r_x
*
r_y
*
r_y
*
r_y
)
-
945
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
3
.
0
*
(
r_x
*
r_y
*
r_z
*
r_z
)
+
105
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
3
.
0
*
(
r_x
*
r_y
);
/* 195 zero-valued terms not written out */
}
/**
* @brief Compute \f$ \frac{\partial^6}{ \partial_x^1 \partial_y^4 \partial_z^1
* }\phi(x, y, z} \f$.
*
* Note that r_inv = 1./sqrt(r_x^2 + r_y^2 + r_z^2)
*/
__attribute__
((
always_inline
))
INLINE
static
double
D_141
(
double
r_x
,
double
r_y
,
double
r_z
,
double
r_inv
)
{
return
+
10395
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
(
r_x
*
r_y
*
r_y
*
r_y
*
r_y
*
r_z
)
-
945
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
6
.
0
*
(
r_x
*
r_y
*
r_y
*
r_z
)
+
105
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
3
.
0
*
(
r_x
*
r_z
);
/* 193 zero-valued terms not written out */
}
/**
* @brief Compute \f$ \frac{\partial^6}{ \partial_x^1 \partial_y^5 }\phi(x, y,
* z} \f$.
*
* Note that r_inv = 1./sqrt(r_x^2 + r_y^2 + r_z^2)
*/
__attribute__
((
always_inline
))
INLINE
static
double
D_150
(
double
r_x
,
double
r_y
,
double
r_z
,
double
r_inv
)
{
return
+
10395
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
(
r_x
*
r_y
*
r_y
*
r_y
*
r_y
*
r_y
)
-
945
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
10
.
0
*
(
r_x
*
r_y
*
r_y
*
r_y
)
+
105
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
15
.
0
*
(
r_x
*
r_y
);
/* 177 zero-valued terms not written out */
}
/**
* @brief Compute \f$ \frac{\partial^6}{ \partial_x^2 \partial_z^4 }\phi(x, y,
* z} \f$.
*
* Note that r_inv = 1./sqrt(r_x^2 + r_y^2 + r_z^2)
*/
__attribute__
((
always_inline
))
INLINE
static
double
D_204
(
double
r_x
,
double
r_y
,
double
r_z
,
double
r_inv
)
{
return
+
10395
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
(
r_x
*
r_x
*
r_z
*
r_z
*
r_z
*
r_z
)
-
945
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
6
.
0
*
(
r_x
*
r_x
*
r_z
*
r_z
)
+
105
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
3
.
0
*
(
r_x
*
r_x
)
-
945
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
(
r_z
*
r_z
*
r_z
*
r_z
)
+
105
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
6
.
0
*
(
r_z
*
r_z
)
-
15
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
3
.
0
;
/* 183 zero-valued terms not written out */
}
/**
* @brief Compute \f$ \frac{\partial^6}{ \partial_x^2 \partial_y^1 \partial_z^3
* }\phi(x, y, z} \f$.
*
* Note that r_inv = 1./sqrt(r_x^2 + r_y^2 + r_z^2)
*/
__attribute__
((
always_inline
))
INLINE
static
double
D_213
(
double
r_x
,
double
r_y
,
double
r_z
,
double
r_inv
)
{
return
+
10395
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
(
r_x
*
r_x
*
r_y
*
r_z
*
r_z
*
r_z
)
-
945
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
3
.
0
*
(
r_x
*
r_x
*
r_y
*
r_z
)
-
945
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
(
r_y
*
r_z
*
r_z
*
r_z
)
+
105
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
3
.
0
*
(
r_y
*
r_z
);
/* 195 zero-valued terms not written out */
}
/**
* @brief Compute \f$ \frac{\partial^6}{ \partial_x^2 \partial_y^2 \partial_z^2
* }\phi(x, y, z} \f$.
*
* Note that r_inv = 1./sqrt(r_x^2 + r_y^2 + r_z^2)
*/
__attribute__
((
always_inline
))
INLINE
static
double
D_222
(
double
r_x
,
double
r_y
,
double
r_z
,
double
r_inv
)
{
return
+
10395
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
(
r_x
*
r_x
*
r_y
*
r_y
*
r_z
*
r_z
)
-
945
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
(
r_x
*
r_x
*
r_y
*
r_y
)
-
945
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
(
r_x
*
r_x
*
r_z
*
r_z
)
+
105
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
(
r_x
*
r_x
)
-
945
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
(
r_y
*
r_y
*
r_z
*
r_z
)
+
105
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
(
r_y
*
r_y
)
+
105
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
(
r_z
*
r_z
)
-
15
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
;
/* 195 zero-valued terms not written out */
}
/**
* @brief Compute \f$ \frac{\partial^6}{ \partial_x^2 \partial_y^3 \partial_z^1
* }\phi(x, y, z} \f$.
*
* Note that r_inv = 1./sqrt(r_x^2 + r_y^2 + r_z^2)
*/
__attribute__
((
always_inline
))
INLINE
static
double
D_231
(
double
r_x
,
double
r_y
,
double
r_z
,
double
r_inv
)
{
return
+
10395
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
(
r_x
*
r_x
*
r_y
*
r_y
*
r_y
*
r_z
)
-
945
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
3
.
0
*
(
r_x
*
r_x
*
r_y
*
r_z
)
-
945
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
(
r_y
*
r_y
*
r_y
*
r_z
)
+
105
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
3
.
0
*
(
r_y
*
r_z
);
/* 195 zero-valued terms not written out */
}
/**
* @brief Compute \f$ \frac{\partial^6}{ \partial_x^2 \partial_y^4 }\phi(x, y,
* z} \f$.
*
* Note that r_inv = 1./sqrt(r_x^2 + r_y^2 + r_z^2)
*/
__attribute__
((
always_inline
))
INLINE
static
double
D_240
(
double
r_x
,
double
r_y
,
double
r_z
,
double
r_inv
)
{
return
+
10395
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
(
r_x
*
r_x
*
r_y
*
r_y
*
r_y
*
r_y
)
-
945
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
6
.
0
*
(
r_x
*
r_x
*
r_y
*
r_y
)
+
105
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
3
.
0
*
(
r_x
*
r_x
)
-
945
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
(
r_y
*
r_y
*
r_y
*
r_y
)
+
105
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
6
.
0
*
(
r_y
*
r_y
)
-
15
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
3
.
0
;
/* 183 zero-valued terms not written out */
}
/**
* @brief Compute \f$ \frac{\partial^6}{ \partial_x^3 \partial_z^3 }\phi(x, y,
* z} \f$.
*
* Note that r_inv = 1./sqrt(r_x^2 + r_y^2 + r_z^2)
*/
__attribute__
((
always_inline
))
INLINE
static
double
D_303
(
double
r_x
,
double
r_y
,
double
r_z
,
double
r_inv
)
{
return
+
10395
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
(
r_x
*
r_x
*
r_x
*
r_z
*
r_z
*
r_z
)
-
945
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
3
.
0
*
(
r_x
*
r_x
*
r_x
*
r_z
)
-
945
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
3
.
0
*
(
r_x
*
r_z
*
r_z
*
r_z
)
+
105
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
9
.
0
*
(
r_x
*
r_z
);
/* 187 zero-valued terms not written out */
}
/**
* @brief Compute \f$ \frac{\partial^6}{ \partial_x^3 \partial_y^1 \partial_z^2
* }\phi(x, y, z} \f$.
*
* Note that r_inv = 1./sqrt(r_x^2 + r_y^2 + r_z^2)
*/
__attribute__
((
always_inline
))
INLINE
static
double
D_312
(
double
r_x
,
double
r_y
,
double
r_z
,
double
r_inv
)
{
return
+
10395
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
(
r_x
*
r_x
*
r_x
*
r_y
*
r_z
*
r_z
)
-
945
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
(
r_x
*
r_x
*
r_x
*
r_y
)
-
945
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
3
.
0
*
(
r_x
*
r_y
*
r_z
*
r_z
)
+
105
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
3
.
0
*
(
r_x
*
r_y
);
/* 195 zero-valued terms not written out */
}
/**
* @brief Compute \f$ \frac{\partial^6}{ \partial_x^3 \partial_y^2 \partial_z^1
* }\phi(x, y, z} \f$.
*
* Note that r_inv = 1./sqrt(r_x^2 + r_y^2 + r_z^2)
*/
__attribute__
((
always_inline
))
INLINE
static
double
D_321
(
double
r_x
,
double
r_y
,
double
r_z
,
double
r_inv
)
{
return
+
10395
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
(
r_x
*
r_x
*
r_x
*
r_y
*
r_y
*
r_z
)
-
945
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
(
r_x
*
r_x
*
r_x
*
r_z
)
-
945
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
3
.
0
*
(
r_x
*
r_y
*
r_y
*
r_z
)
+
105
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
3
.
0
*
(
r_x
*
r_z
);
/* 195 zero-valued terms not written out */
}
/**
* @brief Compute \f$ \frac{\partial^6}{ \partial_x^3 \partial_y^3 }\phi(x, y,
* z} \f$.
*
* Note that r_inv = 1./sqrt(r_x^2 + r_y^2 + r_z^2)
*/
__attribute__
((
always_inline
))
INLINE
static
double
D_330
(
double
r_x
,
double
r_y
,
double
r_z
,
double
r_inv
)
{
return
+
10395
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
(
r_x
*
r_x
*
r_x
*
r_y
*
r_y
*
r_y
)
-
945
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
3
.
0
*
(
r_x
*
r_x
*
r_x
*
r_y
)
-
945
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
3
.
0
*
(
r_x
*
r_y
*
r_y
*
r_y
)
+
105
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
9
.
0
*
(
r_x
*
r_y
);
/* 187 zero-valued terms not written out */
}
/**
* @brief Compute \f$ \frac{\partial^6}{ \partial_x^4 \partial_z^2 }\phi(x, y,
* z} \f$.
*
* Note that r_inv = 1./sqrt(r_x^2 + r_y^2 + r_z^2)
*/
__attribute__
((
always_inline
))
INLINE
static
double
D_402
(
double
r_x
,
double
r_y
,
double
r_z
,
double
r_inv
)
{
return
+
10395
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
(
r_x
*
r_x
*
r_x
*
r_x
*
r_z
*
r_z
)
-
945
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
(
r_x
*
r_x
*
r_x
*
r_x
)
-
945
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
6
.
0
*
(
r_x
*
r_x
*
r_z
*
r_z
)
+
105
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
6
.
0
*
(
r_x
*
r_x
)
+
105
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
3
.
0
*
(
r_z
*
r_z
)
-
15
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
3
.
0
;
/* 183 zero-valued terms not written out */
}
/**
* @brief Compute \f$ \frac{\partial^6}{ \partial_x^4 \partial_y^1 \partial_z^1
* }\phi(x, y, z} \f$.
*
* Note that r_inv = 1./sqrt(r_x^2 + r_y^2 + r_z^2)
*/
__attribute__
((
always_inline
))
INLINE
static
double
D_411
(
double
r_x
,
double
r_y
,
double
r_z
,
double
r_inv
)
{
return
+
10395
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
(
r_x
*
r_x
*
r_x
*
r_x
*
r_y
*
r_z
)
-
945
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
6
.
0
*
(
r_x
*
r_x
*
r_y
*
r_z
)
+
105
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
3
.
0
*
(
r_y
*
r_z
);
/* 193 zero-valued terms not written out */
}
/**
* @brief Compute \f$ \frac{\partial^6}{ \partial_x^4 \partial_y^2 }\phi(x, y,
* z} \f$.
*
* Note that r_inv = 1./sqrt(r_x^2 + r_y^2 + r_z^2)
*/
__attribute__
((
always_inline
))
INLINE
static
double
D_420
(
double
r_x
,
double
r_y
,
double
r_z
,
double
r_inv
)
{
return
+
10395
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
(
r_x
*
r_x
*
r_x
*
r_x
*
r_y
*
r_y
)
-
945
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
(
r_x
*
r_x
*
r_x
*
r_x
)
-
945
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
6
.
0
*
(
r_x
*
r_x
*
r_y
*
r_y
)
+
105
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
6
.
0
*
(
r_x
*
r_x
)
+
105
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
3
.
0
*
(
r_y
*
r_y
)
-
15
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
3
.
0
;
/* 183 zero-valued terms not written out */
}
/**
* @brief Compute \f$ \frac{\partial^6}{ \partial_x^5 \partial_z^1 }\phi(x, y,
* z} \f$.
*
* Note that r_inv = 1./sqrt(r_x^2 + r_y^2 + r_z^2)
*/
__attribute__
((
always_inline
))
INLINE
static
double
D_501
(
double
r_x
,
double
r_y
,
double
r_z
,
double
r_inv
)
{
return
+
10395
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
(
r_x
*
r_x
*
r_x
*
r_x
*
r_x
*
r_z
)
-
945
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
10
.
0
*
(
r_x
*
r_x
*
r_x
*
r_z
)
+
105
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
15
.
0
*
(
r_x
*
r_z
);
/* 177 zero-valued terms not written out */
}
/**
* @brief Compute \f$ \frac{\partial^6}{ \partial_x^5 \partial_y^1 }\phi(x, y,
* z} \f$.
*
* Note that r_inv = 1./sqrt(r_x^2 + r_y^2 + r_z^2)
*/
__attribute__
((
always_inline
))
INLINE
static
double
D_510
(
double
r_x
,
double
r_y
,
double
r_z
,
double
r_inv
)
{
return
+
10395
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
(
r_x
*
r_x
*
r_x
*
r_x
*
r_x
*
r_y
)
-
945
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
10
.
0
*
(
r_x
*
r_x
*
r_x
*
r_y
)
+
105
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
15
.
0
*
(
r_x
*
r_y
);
/* 177 zero-valued terms not written out */
}
/**
* @brief Compute \f$ \frac{\partial^6}{ \partial_x^6 }\phi(x, y, z} \f$.
*
* Note that r_inv = 1./sqrt(r_x^2 + r_y^2 + r_z^2)
*/
__attribute__
((
always_inline
))
INLINE
static
double
D_600
(
double
r_x
,
double
r_y
,
double
r_z
,
double
r_inv
)
{
return
+
10395
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
(
r_x
*
r_x
*
r_x
*
r_x
*
r_x
*
r_x
)
-
945
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
15
.
0
*
(
r_x
*
r_x
*
r_x
*
r_x
)
+
105
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
45
.
0
*
(
r_x
*
r_x
)
-
15
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
15
.
0
;
/* 127 zero-valued terms not written out */
}
/*********************************/
/* 7th order gravity derivatives */
/*********************************/
/**
* @brief Compute \f$ \frac{\partial^7}{ \partial_z^7 }\phi(x, y, z} \f$.
*
* Note that r_inv = 1./sqrt(r_x^2 + r_y^2 + r_z^2)
*/
__attribute__
((
always_inline
))
INLINE
static
double
D_007
(
double
r_x
,
double
r_y
,
double
r_z
,
double
r_inv
)
{
return
-
135135
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
(
r_z
*
r_z
*
r_z
*
r_z
*
r_z
*
r_z
*
r_z
)
+
10395
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
21
.
0
*
(
r_z
*
r_z
*
r_z
*
r_z
*
r_z
)
-
945
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
105
.
0
*
(
r_z
*
r_z
*
r_z
)
+
105
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
105
.
0
*
(
r_z
);
/* 645 zero-valued terms not written out */
}
/**
* @brief Compute \f$ \frac{\partial^7}{ \partial_y^1 \partial_z^6 }\phi(x, y,
* z} \f$.
*
* Note that r_inv = 1./sqrt(r_x^2 + r_y^2 + r_z^2)
*/
__attribute__
((
always_inline
))
INLINE
static
double
D_016
(
double
r_x
,
double
r_y
,
double
r_z
,
double
r_inv
)
{
return
-
135135
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
(
r_y
*
r_z
*
r_z
*
r_z
*
r_z
*
r_z
*
r_z
)
+
10395
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
15
.
0
*
(
r_y
*
r_z
*
r_z
*
r_z
*
r_z
)
-
945
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
45
.
0
*
(
r_y
*
r_z
*
r_z
)
+
105
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
15
.
0
*
(
r_y
);
/* 801 zero-valued terms not written out */
}
/**
* @brief Compute \f$ \frac{\partial^7}{ \partial_y^2 \partial_z^5 }\phi(x, y,
* z} \f$.
*
* Note that r_inv = 1./sqrt(r_x^2 + r_y^2 + r_z^2)
*/
__attribute__
((
always_inline
))
INLINE
static
double
D_025
(
double
r_x
,
double
r_y
,
double
r_z
,
double
r_inv
)
{
return
-
135135
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
(
r_y
*
r_y
*
r_z
*
r_z
*
r_z
*
r_z
*
r_z
)
+
10395
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
10
.
0
*
(
r_y
*
r_y
*
r_z
*
r_z
*
r_z
)
-
945
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
15
.
0
*
(
r_y
*
r_y
*
r_z
)
+
10395
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
(
r_z
*
r_z
*
r_z
*
r_z
*
r_z
)
-
945
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
10
.
0
*
(
r_z
*
r_z
*
r_z
)
+
105
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
15
.
0
*
(
r_z
);
/* 825 zero-valued terms not written out */
}
/**
* @brief Compute \f$ \frac{\partial^7}{ \partial_y^3 \partial_z^4 }\phi(x, y,
* z} \f$.
*
* Note that r_inv = 1./sqrt(r_x^2 + r_y^2 + r_z^2)
*/
__attribute__
((
always_inline
))
INLINE
static
double
D_034
(
double
r_x
,
double
r_y
,
double
r_z
,
double
r_inv
)
{
return
-
135135
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
(
r_y
*
r_y
*
r_y
*
r_z
*
r_z
*
r_z
*
r_z
)
+
10395
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
6
.
0
*
(
r_y
*
r_y
*
r_y
*
r_z
*
r_z
)
-
945
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
3
.
0
*
(
r_y
*
r_y
*
r_y
)
+
10395
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
3
.
0
*
(
r_y
*
r_z
*
r_z
*
r_z
*
r_z
)
-
945
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
18
.
0
*
(
r_y
*
r_z
*
r_z
)
+
105
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
9
.
0
*
(
r_y
);
/* 837 zero-valued terms not written out */
}
/**
* @brief Compute \f$ \frac{\partial^7}{ \partial_y^4 \partial_z^3 }\phi(x, y,
* z} \f$.
*
* Note that r_inv = 1./sqrt(r_x^2 + r_y^2 + r_z^2)
*/
__attribute__
((
always_inline
))
INLINE
static
double
D_043
(
double
r_x
,
double
r_y
,
double
r_z
,
double
r_inv
)
{
return
-
135135
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
(
r_y
*
r_y
*
r_y
*
r_y
*
r_z
*
r_z
*
r_z
)
+
10395
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
3
.
0
*
(
r_y
*
r_y
*
r_y
*
r_y
*
r_z
)
+
10395
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
6
.
0
*
(
r_y
*
r_y
*
r_z
*
r_z
*
r_z
)
-
945
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
18
.
0
*
(
r_y
*
r_y
*
r_z
)
-
945
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
3
.
0
*
(
r_z
*
r_z
*
r_z
)
+
105
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
9
.
0
*
(
r_z
);
/* 837 zero-valued terms not written out */
}
/**
* @brief Compute \f$ \frac{\partial^7}{ \partial_y^5 \partial_z^2 }\phi(x, y,
* z} \f$.
*
* Note that r_inv = 1./sqrt(r_x^2 + r_y^2 + r_z^2)
*/
__attribute__
((
always_inline
))
INLINE
static
double
D_052
(
double
r_x
,
double
r_y
,
double
r_z
,
double
r_inv
)
{
return
-
135135
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
(
r_y
*
r_y
*
r_y
*
r_y
*
r_y
*
r_z
*
r_z
)
+
10395
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
(
r_y
*
r_y
*
r_y
*
r_y
*
r_y
)
+
10395
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
10
.
0
*
(
r_y
*
r_y
*
r_y
*
r_z
*
r_z
)
-
945
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
10
.
0
*
(
r_y
*
r_y
*
r_y
)
-
945
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
15
.
0
*
(
r_y
*
r_z
*
r_z
)
+
105
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
15
.
0
*
(
r_y
);
/* 825 zero-valued terms not written out */
}
/**
* @brief Compute \f$ \frac{\partial^7}{ \partial_y^6 \partial_z^1 }\phi(x, y,
* z} \f$.
*
* Note that r_inv = 1./sqrt(r_x^2 + r_y^2 + r_z^2)
*/
__attribute__
((
always_inline
))
INLINE
static
double
D_061
(
double
r_x
,
double
r_y
,
double
r_z
,
double
r_inv
)
{
return
-
135135
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
(
r_y
*
r_y
*
r_y
*
r_y
*
r_y
*
r_y
*
r_z
)
+
10395
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
15
.
0
*
(
r_y
*
r_y
*
r_y
*
r_y
*
r_z
)
-
945
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
45
.
0
*
(
r_y
*
r_y
*
r_z
)
+
105
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
15
.
0
*
(
r_z
);
/* 801 zero-valued terms not written out */
}
/**
* @brief Compute \f$ \frac{\partial^7}{ \partial_y^7 }\phi(x, y, z} \f$.
*
* Note that r_inv = 1./sqrt(r_x^2 + r_y^2 + r_z^2)
*/
__attribute__
((
always_inline
))
INLINE
static
double
D_070
(
double
r_x
,
double
r_y
,
double
r_z
,
double
r_inv
)
{
return
-
135135
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
(
r_y
*
r_y
*
r_y
*
r_y
*
r_y
*
r_y
*
r_y
)
+
10395
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
21
.
0
*
(
r_y
*
r_y
*
r_y
*
r_y
*
r_y
)
-
945
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
105
.
0
*
(
r_y
*
r_y
*
r_y
)
+
105
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
105
.
0
*
(
r_y
);
/* 645 zero-valued terms not written out */
}
/**
* @brief Compute \f$ \frac{\partial^7}{ \partial_x^1 \partial_z^6 }\phi(x, y,
* z} \f$.
*
* Note that r_inv = 1./sqrt(r_x^2 + r_y^2 + r_z^2)
*/
__attribute__
((
always_inline
))
INLINE
static
double
D_106
(
double
r_x
,
double
r_y
,
double
r_z
,
double
r_inv
)
{
return
-
135135
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
(
r_x
*
r_z
*
r_z
*
r_z
*
r_z
*
r_z
*
r_z
)
+
10395
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
15
.
0
*
(
r_x
*
r_z
*
r_z
*
r_z
*
r_z
)
-
945
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
45
.
0
*
(
r_x
*
r_z
*
r_z
)
+
105
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
15
.
0
*
(
r_x
);
/* 801 zero-valued terms not written out */
}
/**
* @brief Compute \f$ \frac{\partial^7}{ \partial_x^1 \partial_y^1 \partial_z^5
* }\phi(x, y, z} \f$.
*
* Note that r_inv = 1./sqrt(r_x^2 + r_y^2 + r_z^2)
*/
__attribute__
((
always_inline
))
INLINE
static
double
D_115
(
double
r_x
,
double
r_y
,
double
r_z
,
double
r_inv
)
{
return
-
135135
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
(
r_x
*
r_y
*
r_z
*
r_z
*
r_z
*
r_z
*
r_z
)
+
10395
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
10
.
0
*
(
r_x
*
r_y
*
r_z
*
r_z
*
r_z
)
-
945
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
15
.
0
*
(
r_x
*
r_y
*
r_z
);
/* 851 zero-valued terms not written out */
}
/**
* @brief Compute \f$ \frac{\partial^7}{ \partial_x^1 \partial_y^2 \partial_z^4
* }\phi(x, y, z} \f$.
*
* Note that r_inv = 1./sqrt(r_x^2 + r_y^2 + r_z^2)
*/
__attribute__
((
always_inline
))
INLINE
static
double
D_124
(
double
r_x
,
double
r_y
,
double
r_z
,
double
r_inv
)
{
return
-
135135
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
(
r_x
*
r_y
*
r_y
*
r_z
*
r_z
*
r_z
*
r_z
)
+
10395
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
6
.
0
*
(
r_x
*
r_y
*
r_y
*
r_z
*
r_z
)
-
945
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
3
.
0
*
(
r_x
*
r_y
*
r_y
)
+
10395
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
(
r_x
*
r_z
*
r_z
*
r_z
*
r_z
)
-
945
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
6
.
0
*
(
r_x
*
r_z
*
r_z
)
+
105
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
3
.
0
*
(
r_x
);
/* 857 zero-valued terms not written out */
}
/**
* @brief Compute \f$ \frac{\partial^7}{ \partial_x^1 \partial_y^3 \partial_z^3
* }\phi(x, y, z} \f$.
*
* Note that r_inv = 1./sqrt(r_x^2 + r_y^2 + r_z^2)
*/
__attribute__
((
always_inline
))
INLINE
static
double
D_133
(
double
r_x
,
double
r_y
,
double
r_z
,
double
r_inv
)
{
return
-
135135
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
(
r_x
*
r_y
*
r_y
*
r_y
*
r_z
*
r_z
*
r_z
)
+
10395
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
3
.
0
*
(
r_x
*
r_y
*
r_y
*
r_y
*
r_z
)
+
10395
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
3
.
0
*
(
r_x
*
r_y
*
r_z
*
r_z
*
r_z
)
-
945
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
9
.
0
*
(
r_x
*
r_y
*
r_z
);
/* 861 zero-valued terms not written out */
}
/**
* @brief Compute \f$ \frac{\partial^7}{ \partial_x^1 \partial_y^4 \partial_z^2
* }\phi(x, y, z} \f$.
*
* Note that r_inv = 1./sqrt(r_x^2 + r_y^2 + r_z^2)
*/
__attribute__
((
always_inline
))
INLINE
static
double
D_142
(
double
r_x
,
double
r_y
,
double
r_z
,
double
r_inv
)
{
return
-
135135
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
(
r_x
*
r_y
*
r_y
*
r_y
*
r_y
*
r_z
*
r_z
)
+
10395
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
(
r_x
*
r_y
*
r_y
*
r_y
*
r_y
)
+
10395
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
6
.
0
*
(
r_x
*
r_y
*
r_y
*
r_z
*
r_z
)
-
945
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
6
.
0
*
(
r_x
*
r_y
*
r_y
)
-
945
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
3
.
0
*
(
r_x
*
r_z
*
r_z
)
+
105
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
3
.
0
*
(
r_x
);
/* 857 zero-valued terms not written out */
}
/**
* @brief Compute \f$ \frac{\partial^7}{ \partial_x^1 \partial_y^5 \partial_z^1
* }\phi(x, y, z} \f$.
*
* Note that r_inv = 1./sqrt(r_x^2 + r_y^2 + r_z^2)
*/
__attribute__
((
always_inline
))
INLINE
static
double
D_151
(
double
r_x
,
double
r_y
,
double
r_z
,
double
r_inv
)
{
return
-
135135
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
(
r_x
*
r_y
*
r_y
*
r_y
*
r_y
*
r_y
*
r_z
)
+
10395
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
10
.
0
*
(
r_x
*
r_y
*
r_y
*
r_y
*
r_z
)
-
945
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
15
.
0
*
(
r_x
*
r_y
*
r_z
);
/* 851 zero-valued terms not written out */
}
/**
* @brief Compute \f$ \frac{\partial^7}{ \partial_x^1 \partial_y^6 }\phi(x, y,
* z} \f$.
*
* Note that r_inv = 1./sqrt(r_x^2 + r_y^2 + r_z^2)
*/
__attribute__
((
always_inline
))
INLINE
static
double
D_160
(
double
r_x
,
double
r_y
,
double
r_z
,
double
r_inv
)
{
return
-
135135
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
(
r_x
*
r_y
*
r_y
*
r_y
*
r_y
*
r_y
*
r_y
)
+
10395
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
15
.
0
*
(
r_x
*
r_y
*
r_y
*
r_y
*
r_y
)
-
945
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
45
.
0
*
(
r_x
*
r_y
*
r_y
)
+
105
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
15
.
0
*
(
r_x
);
/* 801 zero-valued terms not written out */
}
/**
* @brief Compute \f$ \frac{\partial^7}{ \partial_x^2 \partial_z^5 }\phi(x, y,
* z} \f$.
*
* Note that r_inv = 1./sqrt(r_x^2 + r_y^2 + r_z^2)
*/
__attribute__
((
always_inline
))
INLINE
static
double
D_205
(
double
r_x
,
double
r_y
,
double
r_z
,
double
r_inv
)
{
return
-
135135
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
(
r_x
*
r_x
*
r_z
*
r_z
*
r_z
*
r_z
*
r_z
)
+
10395
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
10
.
0
*
(
r_x
*
r_x
*
r_z
*
r_z
*
r_z
)
-
945
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
15
.
0
*
(
r_x
*
r_x
*
r_z
)
+
10395
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
(
r_z
*
r_z
*
r_z
*
r_z
*
r_z
)
-
945
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
10
.
0
*
(
r_z
*
r_z
*
r_z
)
+
105
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
15
.
0
*
(
r_z
);
/* 825 zero-valued terms not written out */
}
/**
* @brief Compute \f$ \frac{\partial^7}{ \partial_x^2 \partial_y^1 \partial_z^4
* }\phi(x, y, z} \f$.
*
* Note that r_inv = 1./sqrt(r_x^2 + r_y^2 + r_z^2)
*/
__attribute__
((
always_inline
))
INLINE
static
double
D_214
(
double
r_x
,
double
r_y
,
double
r_z
,
double
r_inv
)
{
return
-
135135
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
(
r_x
*
r_x
*
r_y
*
r_z
*
r_z
*
r_z
*
r_z
)
+
10395
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
6
.
0
*
(
r_x
*
r_x
*
r_y
*
r_z
*
r_z
)
-
945
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
3
.
0
*
(
r_x
*
r_x
*
r_y
)
+
10395
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
(
r_y
*
r_z
*
r_z
*
r_z
*
r_z
)
-
945
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
6
.
0
*
(
r_y
*
r_z
*
r_z
)
+
105
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
3
.
0
*
(
r_y
);
/* 857 zero-valued terms not written out */
}
/**
* @brief Compute \f$ \frac{\partial^7}{ \partial_x^2 \partial_y^2 \partial_z^3
* }\phi(x, y, z} \f$.
*
* Note that r_inv = 1./sqrt(r_x^2 + r_y^2 + r_z^2)
*/
__attribute__
((
always_inline
))
INLINE
static
double
D_223
(
double
r_x
,
double
r_y
,
double
r_z
,
double
r_inv
)
{
return
-
135135
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
(
r_x
*
r_x
*
r_y
*
r_y
*
r_z
*
r_z
*
r_z
)
+
10395
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
3
.
0
*
(
r_x
*
r_x
*
r_y
*
r_y
*
r_z
)
+
10395
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
(
r_x
*
r_x
*
r_z
*
r_z
*
r_z
)
-
945
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
3
.
0
*
(
r_x
*
r_x
*
r_z
)
+
10395
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
(
r_y
*
r_y
*
r_z
*
r_z
*
r_z
)
-
945
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
3
.
0
*
(
r_y
*
r_y
*
r_z
)
-
945
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
(
r_z
*
r_z
*
r_z
)
+
105
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
3
.
0
*
(
r_z
);
/* 861 zero-valued terms not written out */
}
/**
* @brief Compute \f$ \frac{\partial^7}{ \partial_x^2 \partial_y^3 \partial_z^2
* }\phi(x, y, z} \f$.
*
* Note that r_inv = 1./sqrt(r_x^2 + r_y^2 + r_z^2)
*/
__attribute__
((
always_inline
))
INLINE
static
double
D_232
(
double
r_x
,
double
r_y
,
double
r_z
,
double
r_inv
)
{
return
-
135135
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
(
r_x
*
r_x
*
r_y
*
r_y
*
r_y
*
r_z
*
r_z
)
+
10395
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
(
r_x
*
r_x
*
r_y
*
r_y
*
r_y
)
+
10395
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
3
.
0
*
(
r_x
*
r_x
*
r_y
*
r_z
*
r_z
)
-
945
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
3
.
0
*
(
r_x
*
r_x
*
r_y
)
+
10395
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
(
r_y
*
r_y
*
r_y
*
r_z
*
r_z
)
-
945
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
(
r_y
*
r_y
*
r_y
)
-
945
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
3
.
0
*
(
r_y
*
r_z
*
r_z
)
+
105
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
3
.
0
*
(
r_y
);
/* 861 zero-valued terms not written out */
}
/**
* @brief Compute \f$ \frac{\partial^7}{ \partial_x^2 \partial_y^4 \partial_z^1
* }\phi(x, y, z} \f$.
*
* Note that r_inv = 1./sqrt(r_x^2 + r_y^2 + r_z^2)
*/
__attribute__
((
always_inline
))
INLINE
static
double
D_241
(
double
r_x
,
double
r_y
,
double
r_z
,
double
r_inv
)
{
return
-
135135
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
(
r_x
*
r_x
*
r_y
*
r_y
*
r_y
*
r_y
*
r_z
)
+
10395
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
6
.
0
*
(
r_x
*
r_x
*
r_y
*
r_y
*
r_z
)
-
945
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
3
.
0
*
(
r_x
*
r_x
*
r_z
)
+
10395
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
(
r_y
*
r_y
*
r_y
*
r_y
*
r_z
)
-
945
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
6
.
0
*
(
r_y
*
r_y
*
r_z
)
+
105
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
3
.
0
*
(
r_z
);
/* 857 zero-valued terms not written out */
}
/**
* @brief Compute \f$ \frac{\partial^7}{ \partial_x^2 \partial_y^5 }\phi(x, y,
* z} \f$.
*
* Note that r_inv = 1./sqrt(r_x^2 + r_y^2 + r_z^2)
*/
__attribute__
((
always_inline
))
INLINE
static
double
D_250
(
double
r_x
,
double
r_y
,
double
r_z
,
double
r_inv
)
{
return
-
135135
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
(
r_x
*
r_x
*
r_y
*
r_y
*
r_y
*
r_y
*
r_y
)
+
10395
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
10
.
0
*
(
r_x
*
r_x
*
r_y
*
r_y
*
r_y
)
-
945
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
15
.
0
*
(
r_x
*
r_x
*
r_y
)
+
10395
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
(
r_y
*
r_y
*
r_y
*
r_y
*
r_y
)
-
945
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
10
.
0
*
(
r_y
*
r_y
*
r_y
)
+
105
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
15
.
0
*
(
r_y
);
/* 825 zero-valued terms not written out */
}
/**
* @brief Compute \f$ \frac{\partial^7}{ \partial_x^3 \partial_z^4 }\phi(x, y,
* z} \f$.
*
* Note that r_inv = 1./sqrt(r_x^2 + r_y^2 + r_z^2)
*/
__attribute__
((
always_inline
))
INLINE
static
double
D_304
(
double
r_x
,
double
r_y
,
double
r_z
,
double
r_inv
)
{
return
-
135135
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
(
r_x
*
r_x
*
r_x
*
r_z
*
r_z
*
r_z
*
r_z
)
+
10395
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
6
.
0
*
(
r_x
*
r_x
*
r_x
*
r_z
*
r_z
)
-
945
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
3
.
0
*
(
r_x
*
r_x
*
r_x
)
+
10395
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
3
.
0
*
(
r_x
*
r_z
*
r_z
*
r_z
*
r_z
)
-
945
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
18
.
0
*
(
r_x
*
r_z
*
r_z
)
+
105
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
9
.
0
*
(
r_x
);
/* 837 zero-valued terms not written out */
}
/**
* @brief Compute \f$ \frac{\partial^7}{ \partial_x^3 \partial_y^1 \partial_z^3
* }\phi(x, y, z} \f$.
*
* Note that r_inv = 1./sqrt(r_x^2 + r_y^2 + r_z^2)
*/
__attribute__
((
always_inline
))
INLINE
static
double
D_313
(
double
r_x
,
double
r_y
,
double
r_z
,
double
r_inv
)
{
return
-
135135
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
(
r_x
*
r_x
*
r_x
*
r_y
*
r_z
*
r_z
*
r_z
)
+
10395
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
3
.
0
*
(
r_x
*
r_x
*
r_x
*
r_y
*
r_z
)
+
10395
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
3
.
0
*
(
r_x
*
r_y
*
r_z
*
r_z
*
r_z
)
-
945
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
9
.
0
*
(
r_x
*
r_y
*
r_z
);
/* 861 zero-valued terms not written out */
}
/**
* @brief Compute \f$ \frac{\partial^7}{ \partial_x^3 \partial_y^2 \partial_z^2
* }\phi(x, y, z} \f$.
*
* Note that r_inv = 1./sqrt(r_x^2 + r_y^2 + r_z^2)
*/
__attribute__
((
always_inline
))
INLINE
static
double
D_322
(
double
r_x
,
double
r_y
,
double
r_z
,
double
r_inv
)
{
return
-
135135
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
(
r_x
*
r_x
*
r_x
*
r_y
*
r_y
*
r_z
*
r_z
)
+
10395
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
(
r_x
*
r_x
*
r_x
*
r_y
*
r_y
)
+
10395
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
(
r_x
*
r_x
*
r_x
*
r_z
*
r_z
)
-
945
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
(
r_x
*
r_x
*
r_x
)
+
10395
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
3
.
0
*
(
r_x
*
r_y
*
r_y
*
r_z
*
r_z
)
-
945
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
3
.
0
*
(
r_x
*
r_y
*
r_y
)
-
945
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
3
.
0
*
(
r_x
*
r_z
*
r_z
)
+
105
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
3
.
0
*
(
r_x
);
/* 861 zero-valued terms not written out */
}
/**
* @brief Compute \f$ \frac{\partial^7}{ \partial_x^3 \partial_y^3 \partial_z^1
* }\phi(x, y, z} \f$.
*
* Note that r_inv = 1./sqrt(r_x^2 + r_y^2 + r_z^2)
*/
__attribute__
((
always_inline
))
INLINE
static
double
D_331
(
double
r_x
,
double
r_y
,
double
r_z
,
double
r_inv
)
{
return
-
135135
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
(
r_x
*
r_x
*
r_x
*
r_y
*
r_y
*
r_y
*
r_z
)
+
10395
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
3
.
0
*
(
r_x
*
r_x
*
r_x
*
r_y
*
r_z
)
+
10395
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
3
.
0
*
(
r_x
*
r_y
*
r_y
*
r_y
*
r_z
)
-
945
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
9
.
0
*
(
r_x
*
r_y
*
r_z
);
/* 861 zero-valued terms not written out */
}
/**
* @brief Compute \f$ \frac{\partial^7}{ \partial_x^3 \partial_y^4 }\phi(x, y,
* z} \f$.
*
* Note that r_inv = 1./sqrt(r_x^2 + r_y^2 + r_z^2)
*/
__attribute__
((
always_inline
))
INLINE
static
double
D_340
(
double
r_x
,
double
r_y
,
double
r_z
,
double
r_inv
)
{
return
-
135135
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
(
r_x
*
r_x
*
r_x
*
r_y
*
r_y
*
r_y
*
r_y
)
+
10395
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
6
.
0
*
(
r_x
*
r_x
*
r_x
*
r_y
*
r_y
)
-
945
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
3
.
0
*
(
r_x
*
r_x
*
r_x
)
+
10395
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
3
.
0
*
(
r_x
*
r_y
*
r_y
*
r_y
*
r_y
)
-
945
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
18
.
0
*
(
r_x
*
r_y
*
r_y
)
+
105
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
9
.
0
*
(
r_x
);
/* 837 zero-valued terms not written out */
}
/**
* @brief Compute \f$ \frac{\partial^7}{ \partial_x^4 \partial_z^3 }\phi(x, y,
* z} \f$.
*
* Note that r_inv = 1./sqrt(r_x^2 + r_y^2 + r_z^2)
*/
__attribute__
((
always_inline
))
INLINE
static
double
D_403
(
double
r_x
,
double
r_y
,
double
r_z
,
double
r_inv
)
{
return
-
135135
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
(
r_x
*
r_x
*
r_x
*
r_x
*
r_z
*
r_z
*
r_z
)
+
10395
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
3
.
0
*
(
r_x
*
r_x
*
r_x
*
r_x
*
r_z
)
+
10395
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
6
.
0
*
(
r_x
*
r_x
*
r_z
*
r_z
*
r_z
)
-
945
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
18
.
0
*
(
r_x
*
r_x
*
r_z
)
-
945
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
3
.
0
*
(
r_z
*
r_z
*
r_z
)
+
105
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
9
.
0
*
(
r_z
);
/* 837 zero-valued terms not written out */
}
/**
* @brief Compute \f$ \frac{\partial^7}{ \partial_x^4 \partial_y^1 \partial_z^2
* }\phi(x, y, z} \f$.
*
* Note that r_inv = 1./sqrt(r_x^2 + r_y^2 + r_z^2)
*/
__attribute__
((
always_inline
))
INLINE
static
double
D_412
(
double
r_x
,
double
r_y
,
double
r_z
,
double
r_inv
)
{
return
-
135135
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
(
r_x
*
r_x
*
r_x
*
r_x
*
r_y
*
r_z
*
r_z
)
+
10395
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
(
r_x
*
r_x
*
r_x
*
r_x
*
r_y
)
+
10395
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
6
.
0
*
(
r_x
*
r_x
*
r_y
*
r_z
*
r_z
)
-
945
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
6
.
0
*
(
r_x
*
r_x
*
r_y
)
-
945
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
3
.
0
*
(
r_y
*
r_z
*
r_z
)
+
105
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
3
.
0
*
(
r_y
);
/* 857 zero-valued terms not written out */
}
/**
* @brief Compute \f$ \frac{\partial^7}{ \partial_x^4 \partial_y^2 \partial_z^1
* }\phi(x, y, z} \f$.
*
* Note that r_inv = 1./sqrt(r_x^2 + r_y^2 + r_z^2)
*/
__attribute__
((
always_inline
))
INLINE
static
double
D_421
(
double
r_x
,
double
r_y
,
double
r_z
,
double
r_inv
)
{
return
-
135135
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
(
r_x
*
r_x
*
r_x
*
r_x
*
r_y
*
r_y
*
r_z
)
+
10395
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
(
r_x
*
r_x
*
r_x
*
r_x
*
r_z
)
+
10395
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
6
.
0
*
(
r_x
*
r_x
*
r_y
*
r_y
*
r_z
)
-
945
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
6
.
0
*
(
r_x
*
r_x
*
r_z
)
-
945
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
3
.
0
*
(
r_y
*
r_y
*
r_z
)
+
105
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
3
.
0
*
(
r_z
);
/* 857 zero-valued terms not written out */
}
/**
* @brief Compute \f$ \frac{\partial^7}{ \partial_x^4 \partial_y^3 }\phi(x, y,
* z} \f$.
*
* Note that r_inv = 1./sqrt(r_x^2 + r_y^2 + r_z^2)
*/
__attribute__
((
always_inline
))
INLINE
static
double
D_430
(
double
r_x
,
double
r_y
,
double
r_z
,
double
r_inv
)
{
return
-
135135
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
(
r_x
*
r_x
*
r_x
*
r_x
*
r_y
*
r_y
*
r_y
)
+
10395
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
3
.
0
*
(
r_x
*
r_x
*
r_x
*
r_x
*
r_y
)
+
10395
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
6
.
0
*
(
r_x
*
r_x
*
r_y
*
r_y
*
r_y
)
-
945
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
18
.
0
*
(
r_x
*
r_x
*
r_y
)
-
945
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
3
.
0
*
(
r_y
*
r_y
*
r_y
)
+
105
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
9
.
0
*
(
r_y
);
/* 837 zero-valued terms not written out */
}
/**
* @brief Compute \f$ \frac{\partial^7}{ \partial_x^5 \partial_z^2 }\phi(x, y,
* z} \f$.
*
* Note that r_inv = 1./sqrt(r_x^2 + r_y^2 + r_z^2)
*/
__attribute__
((
always_inline
))
INLINE
static
double
D_502
(
double
r_x
,
double
r_y
,
double
r_z
,
double
r_inv
)
{
return
-
135135
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
(
r_x
*
r_x
*
r_x
*
r_x
*
r_x
*
r_z
*
r_z
)
+
10395
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
(
r_x
*
r_x
*
r_x
*
r_x
*
r_x
)
+
10395
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
10
.
0
*
(
r_x
*
r_x
*
r_x
*
r_z
*
r_z
)
-
945
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
10
.
0
*
(
r_x
*
r_x
*
r_x
)
-
945
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
15
.
0
*
(
r_x
*
r_z
*
r_z
)
+
105
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
15
.
0
*
(
r_x
);
/* 825 zero-valued terms not written out */
}
/**
* @brief Compute \f$ \frac{\partial^7}{ \partial_x^5 \partial_y^1 \partial_z^1
* }\phi(x, y, z} \f$.
*
* Note that r_inv = 1./sqrt(r_x^2 + r_y^2 + r_z^2)
*/
__attribute__
((
always_inline
))
INLINE
static
double
D_511
(
double
r_x
,
double
r_y
,
double
r_z
,
double
r_inv
)
{
return
-
135135
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
(
r_x
*
r_x
*
r_x
*
r_x
*
r_x
*
r_y
*
r_z
)
+
10395
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
10
.
0
*
(
r_x
*
r_x
*
r_x
*
r_y
*
r_z
)
-
945
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
15
.
0
*
(
r_x
*
r_y
*
r_z
);
/* 851 zero-valued terms not written out */
}
/**
* @brief Compute \f$ \frac{\partial^7}{ \partial_x^5 \partial_y^2 }\phi(x, y,
* z} \f$.
*
* Note that r_inv = 1./sqrt(r_x^2 + r_y^2 + r_z^2)
*/
__attribute__
((
always_inline
))
INLINE
static
double
D_520
(
double
r_x
,
double
r_y
,
double
r_z
,
double
r_inv
)
{
return
-
135135
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
(
r_x
*
r_x
*
r_x
*
r_x
*
r_x
*
r_y
*
r_y
)
+
10395
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
(
r_x
*
r_x
*
r_x
*
r_x
*
r_x
)
+
10395
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
10
.
0
*
(
r_x
*
r_x
*
r_x
*
r_y
*
r_y
)
-
945
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
10
.
0
*
(
r_x
*
r_x
*
r_x
)
-
945
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
15
.
0
*
(
r_x
*
r_y
*
r_y
)
+
105
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
15
.
0
*
(
r_x
);
/* 825 zero-valued terms not written out */
}
/**
* @brief Compute \f$ \frac{\partial^7}{ \partial_x^6 \partial_z^1 }\phi(x, y,
* z} \f$.
*
* Note that r_inv = 1./sqrt(r_x^2 + r_y^2 + r_z^2)
*/
__attribute__
((
always_inline
))
INLINE
static
double
D_601
(
double
r_x
,
double
r_y
,
double
r_z
,
double
r_inv
)
{
return
-
135135
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
(
r_x
*
r_x
*
r_x
*
r_x
*
r_x
*
r_x
*
r_z
)
+
10395
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
15
.
0
*
(
r_x
*
r_x
*
r_x
*
r_x
*
r_z
)
-
945
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
45
.
0
*
(
r_x
*
r_x
*
r_z
)
+
105
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
15
.
0
*
(
r_z
);
/* 801 zero-valued terms not written out */
}
/**
* @brief Compute \f$ \frac{\partial^7}{ \partial_x^6 \partial_y^1 }\phi(x, y,
* z} \f$.
*
* Note that r_inv = 1./sqrt(r_x^2 + r_y^2 + r_z^2)
*/
__attribute__
((
always_inline
))
INLINE
static
double
D_610
(
double
r_x
,
double
r_y
,
double
r_z
,
double
r_inv
)
{
return
-
135135
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
(
r_x
*
r_x
*
r_x
*
r_x
*
r_x
*
r_x
*
r_y
)
+
10395
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
15
.
0
*
(
r_x
*
r_x
*
r_x
*
r_x
*
r_y
)
-
945
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
45
.
0
*
(
r_x
*
r_x
*
r_y
)
+
105
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
15
.
0
*
(
r_y
);
/* 801 zero-valued terms not written out */
}
/**
* @brief Compute \f$ \frac{\partial^7}{ \partial_x^7 }\phi(x, y, z} \f$.
*
* Note that r_inv = 1./sqrt(r_x^2 + r_y^2 + r_z^2)
*/
__attribute__
((
always_inline
))
INLINE
static
double
D_700
(
double
r_x
,
double
r_y
,
double
r_z
,
double
r_inv
)
{
return
-
135135
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
(
r_x
*
r_x
*
r_x
*
r_x
*
r_x
*
r_x
*
r_x
)
+
10395
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
21
.
0
*
(
r_x
*
r_x
*
r_x
*
r_x
*
r_x
)
-
945
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
105
.
0
*
(
r_x
*
r_x
*
r_x
)
+
105
.
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
r_inv
*
105
.
0
*
(
r_x
);
/* 645 zero-valued terms not written out */
}
#endif
/* SWIFT_GRAVITY_DERIVATIVE_H */
This diff is collapsed.
Click to expand it.
src/vector_power.h
+
0
−
840
View file @
b82a0765
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment