Commit ae03b870 authored by Matthieu Schaller's avatar Matthieu Schaller
Browse files

Restored periodic BC behaviour for the tree walk.

parent 8c6f759c
......@@ -504,8 +504,6 @@ int main(int argc, char *argv[]) {
fflush(stdout);
}
periodic = 0;
#ifdef SWIFT_DEBUG_CHECKS
/* Check once and for all that we don't have unwanted links */
if (!with_stars) {
......
......@@ -555,8 +555,9 @@ void gravity_exact_force_check(struct space *s, const struct engine *e,
if (!gravity_exact_force_file_exits(e)) {
char file_name_exact[100];
if(s->periodic)
sprintf(file_name_exact, "gravity_checks_exact_periodic_step%d.dat", e->step);
if (s->periodic)
sprintf(file_name_exact, "gravity_checks_exact_periodic_step%d.dat",
e->step);
else
sprintf(file_name_exact, "gravity_checks_exact_step%d.dat", e->step);
......
......@@ -1477,12 +1477,12 @@ void runner_do_end_force(struct runner *r, struct cell *c, int timer) {
gp->num_interacted++;
if (gp->num_interacted != (long long)e->s->nr_gparts)
error(
"g-particle (id=%lld, type=%d) did not interact "
"g-particle (id=%lld, type=%s) did not interact "
"gravitationally "
"with all other gparts gp->num_interacted=%lld, "
"total_gparts=%zd",
gp->id_or_neg_offset, gp->type, gp->num_interacted,
e->s->nr_gparts);
gp->id_or_neg_offset, part_type_names[gp->type],
gp->num_interacted, e->s->nr_gparts);
}
#endif
}
......
......@@ -426,9 +426,7 @@ void runner_dopair_grav_pp(struct runner *r, struct cell *ci, struct cell *cj) {
TIMER_TIC;
/* Anything to do here? */
const int ci_active = cell_is_active(ci, e);
const int cj_active = cell_is_active(cj, e);
if (!ci_active && !cj_active) return;
if (!cell_is_active(ci, e) && !cell_is_active(cj, e)) return;
/* Check that we are not doing something stupid */
if (ci->split || cj->split) error("Running P-P on splitable cells");
......@@ -438,10 +436,9 @@ void runner_dopair_grav_pp(struct runner *r, struct cell *ci, struct cell *cj) {
if (!cell_are_gpart_drifted(cj, e)) error("Un-drifted gparts");
/* Recover some useful constants */
const struct space *s = e->s;
struct space *s = e->s;
const int periodic = s->periodic;
const double cell_width = s->width[0];
const double dim[3] = {s->dim[0], s->dim[1], s->dim[2]};
const float theta_crit2 = e->gravity_properties->theta_crit2;
const double a_smooth = e->gravity_properties->a_smooth;
const double r_cut_min = e->gravity_properties->r_cut_min;
......@@ -453,13 +450,45 @@ void runner_dopair_grav_pp(struct runner *r, struct cell *ci, struct cell *cj) {
struct gravity_cache *const ci_cache = &r->ci_gravity_cache;
struct gravity_cache *const cj_cache = &r->cj_gravity_cache;
/* Centre of the cell pais */
const double loc_mean[3] = {0.5 * (ci->loc[0] + cj->loc[0]),
0.5 * (ci->loc[1] + cj->loc[1]),
0.5 * (ci->loc[2] + cj->loc[2])};
// MATTHIEU deal with periodicity
/* Get the distance vector between the pairs, wrapping. */
double cell_shift[3];
space_getsid(s, &ci, &cj, cell_shift);
/* Record activity status */
const int ci_active = cell_is_active(ci, e);
const int cj_active = cell_is_active(cj, e);
/* Do we need to drift the multipoles ? */
if (cj_active && ci->ti_old_multipole != e->ti_current)
cell_drift_multipole(ci, e);
if (ci_active && cj->ti_old_multipole != e->ti_current)
cell_drift_multipole(cj, e);
/* Centre of the cell pair */
const double loc[3] = {ci->loc[0], // + 0. * ci->width[0],
ci->loc[1], // + 0. * ci->width[1],
ci->loc[2]}; // + 0. * ci->width[2]};
/* Shift to apply to the particles in each cell */
const double shift_i[3] = {loc[0] + cell_shift[0], loc[1] + cell_shift[1],
loc[2] + cell_shift[2]};
const double shift_j[3] = {loc[0], loc[1], loc[2]};
/* Recover the multipole info and shift the CoM locations */
const float rmax_i = ci->multipole->r_max;
const float rmax_j = cj->multipole->r_max;
const float rmax2_i = rmax_i * rmax_i;
const float rmax2_j = rmax_j * rmax_j;
const struct multipole *multi_i = &ci->multipole->m_pole;
const struct multipole *multi_j = &cj->multipole->m_pole;
const float CoM_i[3] = {ci->multipole->CoM[0] - shift_i[0],
ci->multipole->CoM[1] - shift_i[1],
ci->multipole->CoM[2] - shift_i[2]};
const float CoM_j[3] = {cj->multipole->CoM[0] - shift_j[0],
cj->multipole->CoM[1] - shift_j[1],
cj->multipole->CoM[2] - shift_j[2]};
/* Star by constructing particle caches */
/* Start by constructing particle caches */
/* Computed the padded counts */
const int gcount_i = ci->gcount;
......@@ -467,33 +496,18 @@ void runner_dopair_grav_pp(struct runner *r, struct cell *ci, struct cell *cj) {
const int gcount_padded_i = gcount_i - (gcount_i % VEC_SIZE) + VEC_SIZE;
const int gcount_padded_j = gcount_j - (gcount_j % VEC_SIZE) + VEC_SIZE;
#ifdef SWIFT_DEBUG_CHECKS
/* Check that we fit in cache */
if (gcount_i > ci_cache->count || gcount_j > cj_cache->count)
error("Not enough space in the caches! gcount_i=%d gcount_j=%d", gcount_i,
gcount_j);
/* Recover the multipole info and shift the CoM locations */
const float rmax_i = ci->multipole->r_max;
const float rmax_j = cj->multipole->r_max;
const float rmax2_i = rmax_i * rmax_i;
const float rmax2_j = rmax_j * rmax_j;
const struct multipole *multi_i = &ci->multipole->m_pole;
const struct multipole *multi_j = &cj->multipole->m_pole;
const float CoM_i[3] = {ci->multipole->CoM[0] - loc_mean[0],
ci->multipole->CoM[1] - loc_mean[1],
ci->multipole->CoM[2] - loc_mean[2]};
const float CoM_j[3] = {cj->multipole->CoM[0] - loc_mean[0],
cj->multipole->CoM[1] - loc_mean[1],
cj->multipole->CoM[2] - loc_mean[2]};
// MATTHIEU deal with periodicity
#endif
/* Fill the caches */
gravity_cache_populate(e->max_active_bin, ci_cache, ci->gparts, gcount_i,
gcount_padded_i, loc_mean, CoM_j, rmax2_j,
theta_crit2);
gcount_padded_i, shift_i, CoM_j, rmax2_j, theta_crit2);
gravity_cache_populate(e->max_active_bin, cj_cache, cj->gparts, gcount_j,
gcount_padded_j, loc_mean, CoM_i, rmax2_i,
theta_crit2);
gcount_padded_j, shift_j, CoM_i, rmax2_i, theta_crit2);
/* Can we use the Newtonian version or do we need the truncated one ? */
if (!periodic) {
......@@ -523,15 +537,10 @@ void runner_dopair_grav_pp(struct runner *r, struct cell *ci, struct cell *cj) {
} else { /* Periodic BC */
// MATTHIEU deal with periodicity
/* Get the relative distance between the pairs, wrapping. */
double shift[3] = {0.0, 0.0, 0.0};
shift[0] = nearest(cj->loc[0] - ci->loc[0], dim[0]);
shift[1] = nearest(cj->loc[1] - ci->loc[1], dim[1]);
shift[2] = nearest(cj->loc[2] - ci->loc[2], dim[2]);
const double r2 =
shift[0] * shift[0] + shift[1] * shift[1] + shift[2] * shift[2];
/* Get the relative distance between the CoMs */
const double dx[3] = {CoM_j[0] - CoM_i[0], CoM_j[1] - CoM_i[1],
CoM_j[2] - CoM_i[2]};
const double r2 = dx[0] * dx[0] + dx[1] * dx[1] + dx[2] * dx[2];
/* Get the maximal distance between any two particles */
const double max_r = sqrt(r2) + rmax_i + rmax_j;
......@@ -542,25 +551,54 @@ void runner_dopair_grav_pp(struct runner *r, struct cell *ci, struct cell *cj) {
/* Periodic but far-away cells must use the truncated potential */
/* Let's updated the active cell(s) only */
if (ci_active)
if (ci_active) {
/* First the (truncated) P2P */
runner_dopair_grav_pp_truncated(e, rlr_inv, ci_cache, cj_cache,
gcount_i, gcount_j, gcount_padded_j,
ci->gparts, cj->gparts);
if (cj_active)
/* Then the M2P */
runner_dopair_grav_pm(e, ci_cache, gcount_i, gcount_padded_i,
ci->gparts, CoM_j, multi_j, cj);
}
if (cj_active) {
/* First the (truncated) P2P */
runner_dopair_grav_pp_truncated(e, rlr_inv, cj_cache, ci_cache,
gcount_j, gcount_i, gcount_padded_i,
cj->gparts, ci->gparts);
/* Then the M2P */
runner_dopair_grav_pm(e, cj_cache, gcount_j, gcount_padded_j,
cj->gparts, CoM_i, multi_i, ci);
}
} else {
/* Periodic but close-by cells can use the full Newtonian potential */
/* Let's updated the active cell(s) only */
if (ci_active)
if (ci_active) {
/* First the (Newtonian) P2P */
runner_dopair_grav_pp_full(e, ci_cache, cj_cache, gcount_i, gcount_j,
gcount_padded_j, ci->gparts, cj->gparts);
if (cj_active)
/* Then the M2P */
runner_dopair_grav_pm(e, ci_cache, gcount_i, gcount_padded_i,
ci->gparts, CoM_j, multi_j, cj);
}
if (cj_active) {
/* First the (Newtonian) P2P */
runner_dopair_grav_pp_full(e, cj_cache, ci_cache, gcount_j, gcount_i,
gcount_padded_i, cj->gparts, ci->gparts);
/* Then the M2P */
runner_dopair_grav_pm(e, cj_cache, gcount_j, gcount_padded_j,
cj->gparts, CoM_i, multi_i, ci);
}
}
}
......@@ -597,9 +635,11 @@ void runner_doself_grav_pp_full(struct runner *r, struct cell *c) {
/* Anything to do here ?*/
if (!c_active) return;
#ifdef SWIFT_DEBUG_CHECKS
/* Check that we fit in cache */
if (gcount > ci_cache->count)
error("Not enough space in the cache! gcount=%d", gcount);
#endif
/* Computed the padded counts */
const int gcount_padded = gcount - (gcount % VEC_SIZE) + VEC_SIZE;
......@@ -721,9 +761,11 @@ void runner_doself_grav_pp_truncated(struct runner *r, struct cell *c) {
/* Anything to do here ?*/
if (!c_active) return;
#ifdef SWIFT_DEBUG_CHECKS
/* Check that we fit in cache */
if (gcount > ci_cache->count)
error("Not enough space in the caches! gcount=%d", gcount);
#endif
/* Computed the padded counts */
const int gcount_padded = gcount - (gcount % VEC_SIZE) + VEC_SIZE;
......@@ -852,7 +894,7 @@ void runner_doself_grav_pp(struct runner *r, struct cell *c) {
} else {
/* Get the maximal distance between any two particles */
const double max_r = 2 * c->multipole->r_max;
const double max_r = 2. * c->multipole->r_max;
/* Do we need to use the truncated interactions ? */
if (max_r > min_trunc)
......
Supports Markdown
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment