Commit 954b572d authored by Matthieu Schaller's avatar Matthieu Schaller
Browse files

Added the 'Square test' in 2D.

parent 352f3fa0
......@@ -27,7 +27,7 @@ Statistics:
SPH:
resolution_eta: 1.2348 # Target smoothing length in units of the mean inter-particle separation (1.2348 == 48Ngbs with the cubic spline kernel).
delta_neighbours: 0.1 # The tolerance for the targetted number of neighbours.
max_smoothing_length: 0.1 # Maximal smoothing length allowed (in internal units).
max_smoothing_length: 0.02 # Maximal smoothing length allowed (in internal units).
CFL_condition: 0.1 # Courant-Friedrich-Levy condition for time integration.
# Parameters related to the initial conditions
......
......@@ -19,7 +19,6 @@
import h5py
from numpy import *
import sys
# Generates a swift IC file for the Gresho-Chan vortex in a periodic box
......@@ -80,7 +79,7 @@ fileOutput = h5py.File(fileOutputName, 'w')
# Header
grp = fileOutput.create_group("/Header")
grp.attrs["BoxSize"] = boxSize
grp.attrs["BoxSize"] = [boxSize, boxSize, 0.2]
grp.attrs["NumPart_Total"] = [numPart, 0, 0, 0, 0, 0]
grp.attrs["NumPart_Total_HighWord"] = [0, 0, 0, 0, 0, 0]
grp.attrs["NumPart_ThisFile"] = [numPart, 0, 0, 0, 0, 0]
......
###############################################################################
# This file is part of SWIFT.
# Copyright (c) 2016 Matthieu Schaller (matthieu.schaller@durham.ac.uk)
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published
# by the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
##############################################################################
import h5py
from numpy import *
# Generates a swift IC file for the Square test in a periodic box
# Parameters
L = 64 # Number of particles on the side
gamma = 5./3. # Gas adiabatic index
rho0 = 4 # Gas central density
rho1 = 1 # Gas outskirt density
P0 = 2.5 # Gas central pressure
P1 = 2.5 # Gas central pressure
vx = 142.3 # Random velocity for all particles
vy = -31.4
fileOutputName = "square.hdf5"
#---------------------------------------------------
vol = 1.
numPart_out = L * L
numPart_in = L * L * rho0 / rho1 / 4
L_out = int(sqrt(numPart_out))
L_in = int(sqrt(numPart_in))
pos_out = zeros((numPart_out, 3))
for i in range(L_out):
for j in range(L_out):
index = i * L_out + j
pos_out[index, 0] = i / (float(L_out)) + 1./(2. * L_out)
pos_out[index, 1] = j / (float(L_out)) + 1./(2. * L_out)
h_out = ones(numPart_out) * (1. / L_out) * 1.2348
m_out = ones(numPart_out) * vol * rho1 / numPart_out
u_out = ones(numPart_out) * P1 / (rho1 * (gamma - 1.))
pos_in = zeros((numPart_in, 3))
for i in range(L_in):
for j in range(L_in):
index = i * L_in + j
pos_in[index, 0] = 0.25 + i / float(2. * L_in) + 1./(2. * 2. * L_in)
pos_in[index, 1] = 0.25 + j / float(2. * L_in) + 1./(2. * 2. * L_in)
h_in = ones(numPart_in) * (1. / L_in) * 1.2348
m_in = ones(numPart_in) * 0.25 * vol * rho0 / numPart_in
u_in = ones(numPart_in) * P0 / (rho0 * (gamma - 1.))
# Remove the central particles
select_out = logical_or(logical_or(pos_out[:,0] < 0.25 , pos_out[:,0] > 0.75), logical_or(pos_out[:,1] < 0.25, pos_out[:,1] > 0.75))
pos_out = pos_out[select_out, :]
h_out = h_out[select_out]
u_out = u_out[select_out]
m_out = m_out[select_out]
# Add the central region
pos = append(pos_out, pos_in, axis=0)
h = append(h_out, h_in, axis=0)
u = append(u_out, u_in)
m = append(m_out, m_in)
numPart = size(h)
ids = linspace(1, numPart, numPart)
vel = zeros((numPart, 3))
vel[:,0] = vx
vel[:,1] = vy
#File
fileOutput = h5py.File(fileOutputName, 'w')
# Header
grp = fileOutput.create_group("/Header")
grp.attrs["BoxSize"] = [vol, vol, 0.2]
grp.attrs["NumPart_Total"] = [numPart, 0, 0, 0, 0, 0]
grp.attrs["NumPart_Total_HighWord"] = [0, 0, 0, 0, 0, 0]
grp.attrs["NumPart_ThisFile"] = [numPart, 0, 0, 0, 0, 0]
grp.attrs["Time"] = 0.0
grp.attrs["NumFilesPerSnapshot"] = 1
grp.attrs["MassTable"] = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
grp.attrs["Flag_Entropy_ICs"] = [0, 0, 0, 0, 0, 0]
#Runtime parameters
grp = fileOutput.create_group("/RuntimePars")
grp.attrs["PeriodicBoundariesOn"] = 1
#Units
grp = fileOutput.create_group("/Units")
grp.attrs["Unit length in cgs (U_L)"] = 1.
grp.attrs["Unit mass in cgs (U_M)"] = 1.
grp.attrs["Unit time in cgs (U_t)"] = 1.
grp.attrs["Unit current in cgs (U_I)"] = 1.
grp.attrs["Unit temperature in cgs (U_T)"] = 1.
#Particle group
grp = fileOutput.create_group("/PartType0")
ds = grp.create_dataset('Coordinates', (numPart, 3), 'd')
ds[()] = pos
ds = grp.create_dataset('Velocities', (numPart, 3), 'f')
ds[()] = vel
ds = grp.create_dataset('Masses', (numPart, 1), 'f')
ds[()] = m.reshape((numPart,1))
ds = grp.create_dataset('SmoothingLength', (numPart,1), 'f')
ds[()] = h.reshape((numPart,1))
ds = grp.create_dataset('InternalEnergy', (numPart,1), 'f')
ds[()] = u.reshape((numPart,1))
ds = grp.create_dataset('ParticleIDs', (numPart,1), 'L')
ds[()] = ids.reshape((numPart,1))
fileOutput.close()
###############################################################################
# This file is part of SWIFT.
# Copyright (c) 2016 Matthieu Schaller (matthieu.schaller@durham.ac.uk)
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published
# by the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
##############################################################################
# Computes the analytical solution of the square test
# Parameters
gas_gamma = 5./3. # Gas adiabatic index
gamma = 5./3. # Gas adiabatic index
rho0 = 4 # Gas central density
rho1 = 1 # Gas outskirt density
P0 = 2.5 # Gas central pressure
P1 = 2.5 # Gas central pressure
vx = 142.3 # Random velocity for all particles
vy = -31.4
# ---------------------------------------------------------------
# Don't touch anything after this.
# ---------------------------------------------------------------
import matplotlib
matplotlib.use("Agg")
from pylab import *
import h5py
# Plot parameters
params = {'axes.labelsize': 10,
'axes.titlesize': 10,
'font.size': 12,
'legend.fontsize': 12,
'xtick.labelsize': 10,
'ytick.labelsize': 10,
'text.usetex': True,
'figure.figsize' : (9.90,6.45),
'figure.subplot.left' : 0.045,
'figure.subplot.right' : 0.99,
'figure.subplot.bottom' : 0.05,
'figure.subplot.top' : 0.99,
'figure.subplot.wspace' : 0.15,
'figure.subplot.hspace' : 0.12,
'lines.markersize' : 6,
'lines.linewidth' : 3.,
'text.latex.unicode': True
}
rcParams.update(params)
rc('font',**{'family':'sans-serif','sans-serif':['Times']})
snap = int(sys.argv[1])
# Read the simulation data
sim = h5py.File("square_%03d.hdf5"%snap, "r")
boxSize = sim["/Header"].attrs["BoxSize"][0]
time = sim["/Header"].attrs["Time"][0]
scheme = sim["/HydroScheme"].attrs["Scheme"]
kernel = sim["/HydroScheme"].attrs["Kernel function"]
neighbours = sim["/HydroScheme"].attrs["Kernel target N_ngb"]
eta = sim["/HydroScheme"].attrs["Kernel eta"]
git = sim["Code"].attrs["Git Revision"]
# Analytical soltion
centre_x = 0.5 + time * vx
centre_y = 0.5 + time * vy
while centre_x > 1.:
centre_x -= 1.
while centre_x < 0.:
centre_x += 1.
while centre_y > 1.:
centre_y -= 1.
while centre_y < 0.:
centre_y += 1.
pos = sim["/PartType0/Coordinates"][:,:]
vel = sim["/PartType0/Velocities"][:,:]
v_norm = sqrt(vel[:,0]**2 + vel[:,1]**2)
rho = sim["/PartType0/Density"][:]
u = sim["/PartType0/InternalEnergy"][:]
S = sim["/PartType0/Entropy"][:]
P = sim["/PartType0/Pressure"][:]
x = pos[:,0] - centre_x
y = pos[:,1] - centre_y
# Box wrapping
x[x>0.5] -= 1.
x[x<-0.5] += 1.
y[y>0.5] -= 1.
y[y<-0.5] += 1.
# Azimuthal velocity profile -----------------------------
subplot(231)
scatter(x, y, c=v_norm, cmap="PuBu", edgecolors='face', s=4, vmin=-1., vmax=1.)
text(0.47, 0.47, "${\\rm{Velocity~norm}}$", ha="right", va="top", backgroundcolor="w")
plot([-0.25, 0.25], [0.25, 0.25], '--', color='k', alpha=0.8, lw=2)
plot([-0.25, 0.25], [-0.25, -0.25], '--', color='k', alpha=0.8, lw=2)
plot([0.25, 0.25], [-0.25, 0.25], '--', color='k', alpha=0.8, lw=2)
plot([-0.25, -0.25], [-0.25, 0.25], '--', color='k', alpha=0.8, lw=2)
xlabel("${\\rm{Position}}~x$", labelpad=0)
ylabel("${\\rm{Position}}~y$", labelpad=-7)
xlim(-0.5, 0.5)
ylim(-0.5, 0.5)
# Radial density profile --------------------------------
subplot(232)
scatter(x, y, c=rho, cmap="PuBu", edgecolors='face', s=4, vmin=0., vmax=4.)
text(0.47, 0.47, "${\\rm{Density}}$", ha="right", va="top", backgroundcolor="w")
plot([-0.25, 0.25], [0.25, 0.25], '--', color='k', alpha=0.8, lw=2)
plot([-0.25, 0.25], [-0.25, -0.25], '--', color='k', alpha=0.8, lw=2)
plot([0.25, 0.25], [-0.25, 0.25], '--', color='k', alpha=0.8, lw=2)
plot([-0.25, -0.25], [-0.25, 0.25], '--', color='k', alpha=0.8, lw=2)
xlabel("${\\rm{Position}}~x$", labelpad=0)
ylabel("${\\rm{Position}}~y$", labelpad=-7)
xlim(-0.5, 0.5)
ylim(-0.5, 0.5)
# Radial pressure profile --------------------------------
subplot(233)
scatter(x, y, c=P, cmap="PuBu", edgecolors='face', s=4, vmin=2, vmax=4)
text(0.47, 0.47, "${\\rm{Pressure}}$", ha="right", va="top", backgroundcolor="w")
plot([-0.25, 0.25], [0.25, 0.25], '--', color='k', alpha=0.8, lw=2)
plot([-0.25, 0.25], [-0.25, -0.25], '--', color='k', alpha=0.8, lw=2)
plot([0.25, 0.25], [-0.25, 0.25], '--', color='k', alpha=0.8, lw=2)
plot([-0.25, -0.25], [-0.25, 0.25], '--', color='k', alpha=0.8, lw=2)
xlabel("${\\rm{Position}}~x$", labelpad=0)
ylabel("${\\rm{Position}}~y$", labelpad=-7)
xlim(-0.5, 0.5)
ylim(-0.5, 0.5)
# Internal energy profile --------------------------------
subplot(234)
scatter(x, y, c=u, cmap="PuBu", edgecolors='face', s=4, vmin=0.5, vmax=4.)
text(0.47, 0.47, "${\\rm{Internal~energy}}$", ha="right", va="top", backgroundcolor="w")
plot([-0.25, 0.25], [0.25, 0.25], '--', color='k', alpha=0.8, lw=2)
plot([-0.25, 0.25], [-0.25, -0.25], '--', color='k', alpha=0.8, lw=2)
plot([0.25, 0.25], [-0.25, 0.25], '--', color='k', alpha=0.8, lw=2)
plot([-0.25, -0.25], [-0.25, 0.25], '--', color='k', alpha=0.8, lw=2)
xlabel("${\\rm{Position}}~x$", labelpad=0)
ylabel("${\\rm{Position}}~y$", labelpad=-7)
xlim(-0.5, 0.5)
ylim(-0.5, 0.5)
# Radial entropy profile --------------------------------
subplot(235)
scatter(x, y, c=S, cmap="PuBu", edgecolors='face', s=4, vmin=0., vmax=3.)
text(0.47, 0.47, "${\\rm{Entropy}}$", ha="right", va="top", backgroundcolor="w")
plot([-0.25, 0.25], [0.25, 0.25], '--', color='k', alpha=0.8, lw=2)
plot([-0.25, 0.25], [-0.25, -0.25], '--', color='k', alpha=0.8, lw=2)
plot([0.25, 0.25], [-0.25, 0.25], '--', color='k', alpha=0.8, lw=2)
plot([-0.25, -0.25], [-0.25, 0.25], '--', color='k', alpha=0.8, lw=2)
xlabel("${\\rm{Position}}~x$", labelpad=0)
ylabel("${\\rm{Position}}~y$", labelpad=-7)
xlim(-0.5, 0.5)
ylim(-0.5, 0.5)
# Information -------------------------------------
subplot(236, frameon=False)
text(-0.49, 0.9, "Square test with $\\gamma=%.3f$ at $t=%.2f$"%(gas_gamma,time), fontsize=10)
text(-0.49, 0.8, "Centre:~~~ $(P, \\rho) = (%.3f, %.3f)$"%(P0, rho0), fontsize=10)
text(-0.49, 0.7, "Outskirts: $(P, \\rho) = (%.3f, %.3f)$"%(P1, rho1), fontsize=10)
plot([-0.49, 0.1], [0.62, 0.62], 'k-', lw=1)
text(-0.49, 0.5, "$\\textsc{Swift}$ %s"%git, fontsize=10)
text(-0.49, 0.4, scheme, fontsize=10)
text(-0.49, 0.3, kernel, fontsize=10)
text(-0.49, 0.2, "$%.2f$ neighbours ($\\eta=%.3f$)"%(neighbours, eta), fontsize=10)
xlim(-0.5, 0.5)
ylim(0, 1)
xticks([])
yticks([])
savefig("SquareTest.png", dpi=200)
#!/bin/bash
# Generate the initial conditions if they are not present.
if [ ! -e square.hdf5 ]
then
echo "Generating initial conditions for the square test ..."
python makeIC.py
fi
# Run SWIFT
../swift -s -t 1 square.yml
# Plot the solution
python plotSolution.py 40
# Define the system of units to use internally.
InternalUnitSystem:
UnitMass_in_cgs: 1 # Grams
UnitLength_in_cgs: 1 # Centimeters
UnitVelocity_in_cgs: 1 # Centimeters per second
UnitCurrent_in_cgs: 1 # Amperes
UnitTemp_in_cgs: 1 # Kelvin
# Parameters governing the time integration
TimeIntegration:
time_begin: 0. # The starting time of the simulation (in internal units).
time_end: 4. # The end time of the simulation (in internal units).
dt_min: 1e-6 # The minimal time-step size of the simulation (in internal units).
dt_max: 1e-2 # The maximal time-step size of the simulation (in internal units).
# Parameters governing the snapshots
Snapshots:
basename: square # Common part of the name of output files
time_first: 0. # Time of the first output (in internal units)
delta_time: 1e-1 # Time difference between consecutive outputs (in internal units)
# Parameters governing the conserved quantities statistics
Statistics:
delta_time: 1e-2 # Time between statistics output
# Parameters for the hydrodynamics scheme
SPH:
resolution_eta: 1.2348 # Target smoothing length in units of the mean inter-particle separation (1.2348 == 48Ngbs with the cubic spline kernel).
delta_neighbours: 0.1 # The tolerance for the targetted number of neighbours.
max_smoothing_length: 0.02 # Maximal smoothing length allowed (in internal units).
CFL_condition: 0.1 # Courant-Friedrich-Levy condition for time integration.
# Parameters related to the initial conditions
InitialConditions:
file_name: ./square.hdf5 # The file to read
Supports Markdown
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment