Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
SWIFTsim
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Deploy
Releases
Model registry
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
SWIFT
SWIFTsim
Commits
66a6f87e
Commit
66a6f87e
authored
7 years ago
by
Matthieu Schaller
Browse files
Options
Downloads
Patches
Plain Diff
Correct alignment of comments in vector_power.h
parent
d8d009af
Branches
Branches containing commit
Tags
Tags containing commit
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
src/vector_power.h
+147
-147
147 additions, 147 deletions
src/vector_power.h
with
147 additions
and
147 deletions
src/vector_power.h
+
147
−
147
View file @
66a6f87e
...
...
@@ -415,273 +415,273 @@ __attribute__((always_inline)) INLINE static double X_112(const double v[3]) {
/***************************/
/**
* @brief Compute \f$ \frac{1}{(0,0,5)!}\vec{v}^{(0,0,5)} \f$.
*
* Note \f$ \vec{v}^{(0,0,5)} = v_z^5 \f$
* and \f$ \frac{1}{(0,0,5)!} = 1/(0!*0!*5!) = 1/120 = 8.333333e-03 \f$
*
* @param v vector (\f$ v \f$).
*/
* @brief Compute \f$ \frac{1}{(0,0,5)!}\vec{v}^{(0,0,5)} \f$.
*
* Note \f$ \vec{v}^{(0,0,5)} = v_z^5 \f$
* and \f$ \frac{1}{(0,0,5)!} = 1/(0!*0!*5!) = 1/120 = 8.333333e-03 \f$
*
* @param v vector (\f$ v \f$).
*/
__attribute__
((
always_inline
))
INLINE
static
double
X_005
(
const
double
v
[
3
])
{
return
8.333333333333333e-03
*
v
[
2
]
*
v
[
2
]
*
v
[
2
]
*
v
[
2
]
*
v
[
2
];
}
/**
* @brief Compute \f$ \frac{1}{(0,1,4)!}\vec{v}^{(0,1,4)} \f$.
*
* Note \f$ \vec{v}^{(0,1,4)} = v_y^1 v_z^4 \f$
* and \f$ \frac{1}{(0,1,4)!} = 1/(0!*1!*4!) = 1/24 = 4.166667e-02 \f$
*
* @param v vector (\f$ v \f$).
*/
* @brief Compute \f$ \frac{1}{(0,1,4)!}\vec{v}^{(0,1,4)} \f$.
*
* Note \f$ \vec{v}^{(0,1,4)} = v_y^1 v_z^4 \f$
* and \f$ \frac{1}{(0,1,4)!} = 1/(0!*1!*4!) = 1/24 = 4.166667e-02 \f$
*
* @param v vector (\f$ v \f$).
*/
__attribute__
((
always_inline
))
INLINE
static
double
X_014
(
const
double
v
[
3
])
{
return
4.166666666666666e-02
*
v
[
1
]
*
v
[
2
]
*
v
[
2
]
*
v
[
2
]
*
v
[
2
];
}
/**
* @brief Compute \f$ \frac{1}{(0,2,3)!}\vec{v}^{(0,2,3)} \f$.
*
* Note \f$ \vec{v}^{(0,2,3)} = v_y^2 v_z^3 \f$
* and \f$ \frac{1}{(0,2,3)!} = 1/(0!*2!*3!) = 1/12 = 8.333333e-02 \f$
*
* @param v vector (\f$ v \f$).
*/
* @brief Compute \f$ \frac{1}{(0,2,3)!}\vec{v}^{(0,2,3)} \f$.
*
* Note \f$ \vec{v}^{(0,2,3)} = v_y^2 v_z^3 \f$
* and \f$ \frac{1}{(0,2,3)!} = 1/(0!*2!*3!) = 1/12 = 8.333333e-02 \f$
*
* @param v vector (\f$ v \f$).
*/
__attribute__
((
always_inline
))
INLINE
static
double
X_023
(
const
double
v
[
3
])
{
return
8.333333333333333e-02
*
v
[
1
]
*
v
[
1
]
*
v
[
2
]
*
v
[
2
]
*
v
[
2
];
}
/**
* @brief Compute \f$ \frac{1}{(0,3,2)!}\vec{v}^{(0,3,2)} \f$.
*
* Note \f$ \vec{v}^{(0,3,2)} = v_y^3 v_z^2 \f$
* and \f$ \frac{1}{(0,3,2)!} = 1/(0!*3!*2!) = 1/12 = 8.333333e-02 \f$
*
* @param v vector (\f$ v \f$).
*/
* @brief Compute \f$ \frac{1}{(0,3,2)!}\vec{v}^{(0,3,2)} \f$.
*
* Note \f$ \vec{v}^{(0,3,2)} = v_y^3 v_z^2 \f$
* and \f$ \frac{1}{(0,3,2)!} = 1/(0!*3!*2!) = 1/12 = 8.333333e-02 \f$
*
* @param v vector (\f$ v \f$).
*/
__attribute__
((
always_inline
))
INLINE
static
double
X_032
(
const
double
v
[
3
])
{
return
8.333333333333333e-02
*
v
[
1
]
*
v
[
1
]
*
v
[
1
]
*
v
[
2
]
*
v
[
2
];
}
/**
* @brief Compute \f$ \frac{1}{(0,4,1)!}\vec{v}^{(0,4,1)} \f$.
*
* Note \f$ \vec{v}^{(0,4,1)} = v_y^4 v_z^1 \f$
* and \f$ \frac{1}{(0,4,1)!} = 1/(0!*4!*1!) = 1/24 = 4.166667e-02 \f$
*
* @param v vector (\f$ v \f$).
*/
* @brief Compute \f$ \frac{1}{(0,4,1)!}\vec{v}^{(0,4,1)} \f$.
*
* Note \f$ \vec{v}^{(0,4,1)} = v_y^4 v_z^1 \f$
* and \f$ \frac{1}{(0,4,1)!} = 1/(0!*4!*1!) = 1/24 = 4.166667e-02 \f$
*
* @param v vector (\f$ v \f$).
*/
__attribute__
((
always_inline
))
INLINE
static
double
X_041
(
const
double
v
[
3
])
{
return
4.166666666666666e-02
*
v
[
1
]
*
v
[
1
]
*
v
[
1
]
*
v
[
1
]
*
v
[
2
];
}
/**
* @brief Compute \f$ \frac{1}{(0,5,0)!}\vec{v}^{(0,5,0)} \f$.
*
* Note \f$ \vec{v}^{(0,5,0)} = v_y^5 \f$
* and \f$ \frac{1}{(0,5,0)!} = 1/(0!*5!*0!) = 1/120 = 8.333333e-03 \f$
*
* @param v vector (\f$ v \f$).
*/
* @brief Compute \f$ \frac{1}{(0,5,0)!}\vec{v}^{(0,5,0)} \f$.
*
* Note \f$ \vec{v}^{(0,5,0)} = v_y^5 \f$
* and \f$ \frac{1}{(0,5,0)!} = 1/(0!*5!*0!) = 1/120 = 8.333333e-03 \f$
*
* @param v vector (\f$ v \f$).
*/
__attribute__
((
always_inline
))
INLINE
static
double
X_050
(
const
double
v
[
3
])
{
return
8.333333333333333e-03
*
v
[
1
]
*
v
[
1
]
*
v
[
1
]
*
v
[
1
]
*
v
[
1
];
}
/**
* @brief Compute \f$ \frac{1}{(1,0,4)!}\vec{v}^{(1,0,4)} \f$.
*
* Note \f$ \vec{v}^{(1,0,4)} = v_x^1 v_z^4 \f$
* and \f$ \frac{1}{(1,0,4)!} = 1/(1!*0!*4!) = 1/24 = 4.166667e-02 \f$
*
* @param v vector (\f$ v \f$).
*/
* @brief Compute \f$ \frac{1}{(1,0,4)!}\vec{v}^{(1,0,4)} \f$.
*
* Note \f$ \vec{v}^{(1,0,4)} = v_x^1 v_z^4 \f$
* and \f$ \frac{1}{(1,0,4)!} = 1/(1!*0!*4!) = 1/24 = 4.166667e-02 \f$
*
* @param v vector (\f$ v \f$).
*/
__attribute__
((
always_inline
))
INLINE
static
double
X_104
(
const
double
v
[
3
])
{
return
4.166666666666666e-02
*
v
[
0
]
*
v
[
2
]
*
v
[
2
]
*
v
[
2
]
*
v
[
2
];
}
/**
* @brief Compute \f$ \frac{1}{(1,1,3)!}\vec{v}^{(1,1,3)} \f$.
*
* Note \f$ \vec{v}^{(1,1,3)} = v_x^1 v_y^1 v_z^3 \f$
* and \f$ \frac{1}{(1,1,3)!} = 1/(1!*1!*3!) = 1/6 = 1.666667e-01 \f$
*
* @param v vector (\f$ v \f$).
*/
* @brief Compute \f$ \frac{1}{(1,1,3)!}\vec{v}^{(1,1,3)} \f$.
*
* Note \f$ \vec{v}^{(1,1,3)} = v_x^1 v_y^1 v_z^3 \f$
* and \f$ \frac{1}{(1,1,3)!} = 1/(1!*1!*3!) = 1/6 = 1.666667e-01 \f$
*
* @param v vector (\f$ v \f$).
*/
__attribute__
((
always_inline
))
INLINE
static
double
X_113
(
const
double
v
[
3
])
{
return
1.666666666666667e-01
*
v
[
0
]
*
v
[
1
]
*
v
[
2
]
*
v
[
2
]
*
v
[
2
];
}
/**
* @brief Compute \f$ \frac{1}{(1,2,2)!}\vec{v}^{(1,2,2)} \f$.
*
* Note \f$ \vec{v}^{(1,2,2)} = v_x^1 v_y^2 v_z^2 \f$
* and \f$ \frac{1}{(1,2,2)!} = 1/(1!*2!*2!) = 1/4 = 2.500000e-01 \f$
*
* @param v vector (\f$ v \f$).
*/
* @brief Compute \f$ \frac{1}{(1,2,2)!}\vec{v}^{(1,2,2)} \f$.
*
* Note \f$ \vec{v}^{(1,2,2)} = v_x^1 v_y^2 v_z^2 \f$
* and \f$ \frac{1}{(1,2,2)!} = 1/(1!*2!*2!) = 1/4 = 2.500000e-01 \f$
*
* @param v vector (\f$ v \f$).
*/
__attribute__
((
always_inline
))
INLINE
static
double
X_122
(
const
double
v
[
3
])
{
return
2.500000000000000e-01
*
v
[
0
]
*
v
[
1
]
*
v
[
1
]
*
v
[
2
]
*
v
[
2
];
}
/**
* @brief Compute \f$ \frac{1}{(1,3,1)!}\vec{v}^{(1,3,1)} \f$.
*
* Note \f$ \vec{v}^{(1,3,1)} = v_x^1 v_y^3 v_z^1 \f$
* and \f$ \frac{1}{(1,3,1)!} = 1/(1!*3!*1!) = 1/6 = 1.666667e-01 \f$
*
* @param v vector (\f$ v \f$).
*/
* @brief Compute \f$ \frac{1}{(1,3,1)!}\vec{v}^{(1,3,1)} \f$.
*
* Note \f$ \vec{v}^{(1,3,1)} = v_x^1 v_y^3 v_z^1 \f$
* and \f$ \frac{1}{(1,3,1)!} = 1/(1!*3!*1!) = 1/6 = 1.666667e-01 \f$
*
* @param v vector (\f$ v \f$).
*/
__attribute__
((
always_inline
))
INLINE
static
double
X_131
(
const
double
v
[
3
])
{
return
1.666666666666667e-01
*
v
[
0
]
*
v
[
1
]
*
v
[
1
]
*
v
[
1
]
*
v
[
2
];
}
/**
* @brief Compute \f$ \frac{1}{(1,4,0)!}\vec{v}^{(1,4,0)} \f$.
*
* Note \f$ \vec{v}^{(1,4,0)} = v_x^1 v_y^4 \f$
* and \f$ \frac{1}{(1,4,0)!} = 1/(1!*4!*0!) = 1/24 = 4.166667e-02 \f$
*
* @param v vector (\f$ v \f$).
*/
* @brief Compute \f$ \frac{1}{(1,4,0)!}\vec{v}^{(1,4,0)} \f$.
*
* Note \f$ \vec{v}^{(1,4,0)} = v_x^1 v_y^4 \f$
* and \f$ \frac{1}{(1,4,0)!} = 1/(1!*4!*0!) = 1/24 = 4.166667e-02 \f$
*
* @param v vector (\f$ v \f$).
*/
__attribute__
((
always_inline
))
INLINE
static
double
X_140
(
const
double
v
[
3
])
{
return
4.166666666666666e-02
*
v
[
0
]
*
v
[
1
]
*
v
[
1
]
*
v
[
1
]
*
v
[
1
];
}
/**
* @brief Compute \f$ \frac{1}{(2,0,3)!}\vec{v}^{(2,0,3)} \f$.
*
* Note \f$ \vec{v}^{(2,0,3)} = v_x^2 v_z^3 \f$
* and \f$ \frac{1}{(2,0,3)!} = 1/(2!*0!*3!) = 1/12 = 8.333333e-02 \f$
*
* @param v vector (\f$ v \f$).
*/
* @brief Compute \f$ \frac{1}{(2,0,3)!}\vec{v}^{(2,0,3)} \f$.
*
* Note \f$ \vec{v}^{(2,0,3)} = v_x^2 v_z^3 \f$
* and \f$ \frac{1}{(2,0,3)!} = 1/(2!*0!*3!) = 1/12 = 8.333333e-02 \f$
*
* @param v vector (\f$ v \f$).
*/
__attribute__
((
always_inline
))
INLINE
static
double
X_203
(
const
double
v
[
3
])
{
return
8.333333333333333e-02
*
v
[
0
]
*
v
[
0
]
*
v
[
2
]
*
v
[
2
]
*
v
[
2
];
}
/**
* @brief Compute \f$ \frac{1}{(2,1,2)!}\vec{v}^{(2,1,2)} \f$.
*
* Note \f$ \vec{v}^{(2,1,2)} = v_x^2 v_y^1 v_z^2 \f$
* and \f$ \frac{1}{(2,1,2)!} = 1/(2!*1!*2!) = 1/4 = 2.500000e-01 \f$
*
* @param v vector (\f$ v \f$).
*/
* @brief Compute \f$ \frac{1}{(2,1,2)!}\vec{v}^{(2,1,2)} \f$.
*
* Note \f$ \vec{v}^{(2,1,2)} = v_x^2 v_y^1 v_z^2 \f$
* and \f$ \frac{1}{(2,1,2)!} = 1/(2!*1!*2!) = 1/4 = 2.500000e-01 \f$
*
* @param v vector (\f$ v \f$).
*/
__attribute__
((
always_inline
))
INLINE
static
double
X_212
(
const
double
v
[
3
])
{
return
2.500000000000000e-01
*
v
[
0
]
*
v
[
0
]
*
v
[
1
]
*
v
[
2
]
*
v
[
2
];
}
/**
* @brief Compute \f$ \frac{1}{(2,2,1)!}\vec{v}^{(2,2,1)} \f$.
*
* Note \f$ \vec{v}^{(2,2,1)} = v_x^2 v_y^2 v_z^1 \f$
* and \f$ \frac{1}{(2,2,1)!} = 1/(2!*2!*1!) = 1/4 = 2.500000e-01 \f$
*
* @param v vector (\f$ v \f$).
*/
* @brief Compute \f$ \frac{1}{(2,2,1)!}\vec{v}^{(2,2,1)} \f$.
*
* Note \f$ \vec{v}^{(2,2,1)} = v_x^2 v_y^2 v_z^1 \f$
* and \f$ \frac{1}{(2,2,1)!} = 1/(2!*2!*1!) = 1/4 = 2.500000e-01 \f$
*
* @param v vector (\f$ v \f$).
*/
__attribute__
((
always_inline
))
INLINE
static
double
X_221
(
const
double
v
[
3
])
{
return
2.500000000000000e-01
*
v
[
0
]
*
v
[
0
]
*
v
[
1
]
*
v
[
1
]
*
v
[
2
];
}
/**
* @brief Compute \f$ \frac{1}{(2,3,0)!}\vec{v}^{(2,3,0)} \f$.
*
* Note \f$ \vec{v}^{(2,3,0)} = v_x^2 v_y^3 \f$
* and \f$ \frac{1}{(2,3,0)!} = 1/(2!*3!*0!) = 1/12 = 8.333333e-02 \f$
*
* @param v vector (\f$ v \f$).
*/
* @brief Compute \f$ \frac{1}{(2,3,0)!}\vec{v}^{(2,3,0)} \f$.
*
* Note \f$ \vec{v}^{(2,3,0)} = v_x^2 v_y^3 \f$
* and \f$ \frac{1}{(2,3,0)!} = 1/(2!*3!*0!) = 1/12 = 8.333333e-02 \f$
*
* @param v vector (\f$ v \f$).
*/
__attribute__
((
always_inline
))
INLINE
static
double
X_230
(
const
double
v
[
3
])
{
return
8.333333333333333e-02
*
v
[
0
]
*
v
[
0
]
*
v
[
1
]
*
v
[
1
]
*
v
[
1
];
}
/**
* @brief Compute \f$ \frac{1}{(3,0,2)!}\vec{v}^{(3,0,2)} \f$.
*
* Note \f$ \vec{v}^{(3,0,2)} = v_x^3 v_z^2 \f$
* and \f$ \frac{1}{(3,0,2)!} = 1/(3!*0!*2!) = 1/12 = 8.333333e-02 \f$
*
* @param v vector (\f$ v \f$).
*/
* @brief Compute \f$ \frac{1}{(3,0,2)!}\vec{v}^{(3,0,2)} \f$.
*
* Note \f$ \vec{v}^{(3,0,2)} = v_x^3 v_z^2 \f$
* and \f$ \frac{1}{(3,0,2)!} = 1/(3!*0!*2!) = 1/12 = 8.333333e-02 \f$
*
* @param v vector (\f$ v \f$).
*/
__attribute__
((
always_inline
))
INLINE
static
double
X_302
(
const
double
v
[
3
])
{
return
8.333333333333333e-02
*
v
[
0
]
*
v
[
0
]
*
v
[
0
]
*
v
[
2
]
*
v
[
2
];
}
/**
* @brief Compute \f$ \frac{1}{(3,1,1)!}\vec{v}^{(3,1,1)} \f$.
*
* Note \f$ \vec{v}^{(3,1,1)} = v_x^3 v_y^1 v_z^1 \f$
* and \f$ \frac{1}{(3,1,1)!} = 1/(3!*1!*1!) = 1/6 = 1.666667e-01 \f$
*
* @param v vector (\f$ v \f$).
*/
* @brief Compute \f$ \frac{1}{(3,1,1)!}\vec{v}^{(3,1,1)} \f$.
*
* Note \f$ \vec{v}^{(3,1,1)} = v_x^3 v_y^1 v_z^1 \f$
* and \f$ \frac{1}{(3,1,1)!} = 1/(3!*1!*1!) = 1/6 = 1.666667e-01 \f$
*
* @param v vector (\f$ v \f$).
*/
__attribute__
((
always_inline
))
INLINE
static
double
X_311
(
const
double
v
[
3
])
{
return
1.666666666666667e-01
*
v
[
0
]
*
v
[
0
]
*
v
[
0
]
*
v
[
1
]
*
v
[
2
];
}
/**
* @brief Compute \f$ \frac{1}{(3,2,0)!}\vec{v}^{(3,2,0)} \f$.
*
* Note \f$ \vec{v}^{(3,2,0)} = v_x^3 v_y^2 \f$
* and \f$ \frac{1}{(3,2,0)!} = 1/(3!*2!*0!) = 1/12 = 8.333333e-02 \f$
*
* @param v vector (\f$ v \f$).
*/
* @brief Compute \f$ \frac{1}{(3,2,0)!}\vec{v}^{(3,2,0)} \f$.
*
* Note \f$ \vec{v}^{(3,2,0)} = v_x^3 v_y^2 \f$
* and \f$ \frac{1}{(3,2,0)!} = 1/(3!*2!*0!) = 1/12 = 8.333333e-02 \f$
*
* @param v vector (\f$ v \f$).
*/
__attribute__
((
always_inline
))
INLINE
static
double
X_320
(
const
double
v
[
3
])
{
return
8.333333333333333e-02
*
v
[
0
]
*
v
[
0
]
*
v
[
0
]
*
v
[
1
]
*
v
[
1
];
}
/**
* @brief Compute \f$ \frac{1}{(4,0,1)!}\vec{v}^{(4,0,1)} \f$.
*
* Note \f$ \vec{v}^{(4,0,1)} = v_x^4 v_z^1 \f$
* and \f$ \frac{1}{(4,0,1)!} = 1/(4!*0!*1!) = 1/24 = 4.166667e-02 \f$
*
* @param v vector (\f$ v \f$).
*/
* @brief Compute \f$ \frac{1}{(4,0,1)!}\vec{v}^{(4,0,1)} \f$.
*
* Note \f$ \vec{v}^{(4,0,1)} = v_x^4 v_z^1 \f$
* and \f$ \frac{1}{(4,0,1)!} = 1/(4!*0!*1!) = 1/24 = 4.166667e-02 \f$
*
* @param v vector (\f$ v \f$).
*/
__attribute__
((
always_inline
))
INLINE
static
double
X_401
(
const
double
v
[
3
])
{
return
4.166666666666666e-02
*
v
[
0
]
*
v
[
0
]
*
v
[
0
]
*
v
[
0
]
*
v
[
2
];
}
/**
* @brief Compute \f$ \frac{1}{(4,1,0)!}\vec{v}^{(4,1,0)} \f$.
*
* Note \f$ \vec{v}^{(4,1,0)} = v_x^4 v_y^1 \f$
* and \f$ \frac{1}{(4,1,0)!} = 1/(4!*1!*0!) = 1/24 = 4.166667e-02 \f$
*
* @param v vector (\f$ v \f$).
*/
* @brief Compute \f$ \frac{1}{(4,1,0)!}\vec{v}^{(4,1,0)} \f$.
*
* Note \f$ \vec{v}^{(4,1,0)} = v_x^4 v_y^1 \f$
* and \f$ \frac{1}{(4,1,0)!} = 1/(4!*1!*0!) = 1/24 = 4.166667e-02 \f$
*
* @param v vector (\f$ v \f$).
*/
__attribute__
((
always_inline
))
INLINE
static
double
X_410
(
const
double
v
[
3
])
{
return
4.166666666666666e-02
*
v
[
0
]
*
v
[
0
]
*
v
[
0
]
*
v
[
0
]
*
v
[
1
];
}
/**
* @brief Compute \f$ \frac{1}{(5,0,0)!}\vec{v}^{(5,0,0)} \f$.
*
* Note \f$ \vec{v}^{(5,0,0)} = v_x^5 \f$
* and \f$ \frac{1}{(5,0,0)!} = 1/(5!*0!*0!) = 1/120 = 8.333333e-03 \f$
*
* @param v vector (\f$ v \f$).
*/
* @brief Compute \f$ \frac{1}{(5,0,0)!}\vec{v}^{(5,0,0)} \f$.
*
* Note \f$ \vec{v}^{(5,0,0)} = v_x^5 \f$
* and \f$ \frac{1}{(5,0,0)!} = 1/(5!*0!*0!) = 1/120 = 8.333333e-03 \f$
*
* @param v vector (\f$ v \f$).
*/
__attribute__
((
always_inline
))
INLINE
static
double
X_500
(
const
double
v
[
3
])
{
return
8.333333333333333e-03
*
v
[
0
]
*
v
[
0
]
*
v
[
0
]
*
v
[
0
]
*
v
[
0
];
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment