Skip to content
Snippets Groups Projects
Commit 63813f76 authored by Matthieu Schaller's avatar Matthieu Schaller
Browse files

Added 2D Sod shock test case

parent 3d3dbda5
No related branches found
No related tags found
1 merge request!216Hydrodynamics in 2D + New test cases
......@@ -18,10 +18,9 @@
##############################################################################
import h5py
import random
from numpy import *
# Generates a swift IC file for the Sod Shock in a periodic box
# Generates a swift IC file for the 1D Sod Shock in a periodic box
# Parameters
gamma = 5./3. # Gas adiabatic index
......@@ -64,6 +63,7 @@ for i in range(numPart_L):
u[i] = P_L / (rho_L * (gamma - 1.))
h[i] = 1.2348 * delta_L
m[i] = boxSize * rho_L / (2. * numPart_L)
v[i,0] = v_L
# Set the particles on the right
for j in range(numPart_R):
......@@ -72,6 +72,7 @@ for j in range(numPart_R):
u[i] = P_R / (rho_R * (gamma - 1.))
h[i] = 1.2348 * delta_R
m[i] = boxSize * rho_R / (2. * numPart_R)
v[i,0] = v_R
# Shift particles
coords[:,0] -= x_min
......
......@@ -229,7 +229,7 @@ subplot(231)
plot(x, v, '.', color='r')
plot(x_s, v_s, '--', color='k', alpha=0.8, lw=1.2)
xlabel("$x$", labelpad=0)
ylabel("$v$", labelpad=0)
ylabel("$v_x$", labelpad=0)
xlim(-0.5, 0.5)
ylim(-0.1, 0.95)
......
#!/bin/bash
wget http://virgodb.cosma.dur.ac.uk/swift-webstorage/ICs/glassPlane_128.hdf5
wget http://virgodb.cosma.dur.ac.uk/swift-webstorage/ICs/glassPlane_48.hdf5
###############################################################################
# This file is part of SWIFT.
# Copyright (c) 2016 Matthieu Schaller (matthieu.schaller@durham.ac.uk)
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published
# by the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
##############################################################################
import h5py
from numpy import *
# Generates a swift IC file for the 2D Sod Shock in a periodic box
# Parameters
gamma = 5./3. # Gas adiabatic index
x_min = -1.
x_max = 1.
rho_L = 1. # Density left state
rho_R = 0.140625 # Density right state
v_L = 0. # Velocity left state
v_R = 0. # Velocity right state
P_L = 1. # Pressure left state
P_R = 0.1 # Pressure right state
fileName = "sodShock.hdf5"
#---------------------------------------------------
boxSize = (x_max - x_min)
glass_L = h5py.File("glassPlane_128.hdf5", "r")
glass_R = h5py.File("glassPlane_48.hdf5", "r")
pos_L = glass_L["/PartType0/Coordinates"][:,:] * 0.5
pos_R = glass_R["/PartType0/Coordinates"][:,:] * 0.5
h_L = glass_L["/PartType0/SmoothingLength"][:] * 0.5
h_R = glass_R["/PartType0/SmoothingLength"][:] * 0.5
# Merge things
aa = pos_L - array([0.5, 0., 0.])
pos_LL = append(pos_L, pos_L + array([0.5, 0., 0.]), axis=0)
pos_RR = append(pos_R, pos_R + array([0.5, 0., 0.]), axis=0)
pos = append(pos_LL - array([1.0, 0., 0.]), pos_RR, axis=0)
h_LL = append(h_L, h_L)
h_RR = append(h_R, h_R)
h = append(h_LL, h_RR)
numPart_L = size(h_LL)
numPart_R = size(h_RR)
numPart = size(h)
vol_L = 0.5
vol_R = 0.5
# Generate extra arrays
v = zeros((numPart, 3))
ids = linspace(1, numPart, numPart)
m = zeros(numPart)
u = zeros(numPart)
for i in range(numPart):
x = pos[i,0]
if x < 0: #left
u[i] = P_L / (rho_L * (gamma - 1.))
m[i] = rho_L * vol_L / numPart_L
v[i,0] = v_L
else: #right
u[i] = P_R / (rho_R * (gamma - 1.))
m[i] = rho_R * vol_R / numPart_R
v[i,0] = v_R
# Shift particles
pos[:,0] -= x_min
#File
file = h5py.File(fileName, 'w')
# Header
grp = file.create_group("/Header")
grp.attrs["BoxSize"] = [boxSize, 0.5, 0.1]
grp.attrs["NumPart_Total"] = [numPart, 0, 0, 0, 0, 0]
grp.attrs["NumPart_Total_HighWord"] = [0, 0, 0, 0, 0, 0]
grp.attrs["NumPart_ThisFile"] = [numPart, 0, 0, 0, 0, 0]
grp.attrs["Time"] = 0.0
grp.attrs["NumFilesPerSnapshot"] = 1
grp.attrs["MassTable"] = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
grp.attrs["Flag_Entropy_ICs"] = 0
#Runtime parameters
grp = file.create_group("/RuntimePars")
grp.attrs["PeriodicBoundariesOn"] = 1
#Units
grp = file.create_group("/Units")
grp.attrs["Unit length in cgs (U_L)"] = 1.
grp.attrs["Unit mass in cgs (U_M)"] = 1.
grp.attrs["Unit time in cgs (U_t)"] = 1.
grp.attrs["Unit current in cgs (U_I)"] = 1.
grp.attrs["Unit temperature in cgs (U_T)"] = 1.
#Particle group
grp = file.create_group("/PartType0")
grp.create_dataset('Coordinates', data=pos, dtype='d')
grp.create_dataset('Velocities', data=v, dtype='f')
grp.create_dataset('Masses', data=m, dtype='f')
grp.create_dataset('SmoothingLength', data=h, dtype='f')
grp.create_dataset('InternalEnergy', data=u, dtype='f')
grp.create_dataset('ParticleIDs', data=ids, dtype='L')
file.close()
###############################################################################
# This file is part of SWIFT.
# Copyright (c) 2016 Matthieu Schaller (matthieu.schaller@durham.ac.uk)
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published
# by the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
##############################################################################
# Computes the analytical solution of the Sod shock and plots the SPH answer
# Generates the analytical solution for the Sod shock test case
# The script works for a given left (x<0) and right (x>0) state and computes the solution at a later time t.
# The code writes five files rho.dat, P.dat, v.dat, u.dat and s.dat with the density, pressure, internal energy and
# entropic function on N points between x_min and x_max.
# This follows the solution given in (Toro, 2009)
# Parameters
gas_gamma = 5./3. # Polytropic index
rho_L = 1. # Density left state
rho_R = 0.140625 # Density right state
v_L = 0. # Velocity left state
v_R = 0. # Velocity right state
P_L = 1. # Pressure left state
P_R = 0.1 # Pressure right state
import matplotlib
matplotlib.use("Agg")
from pylab import *
import h5py
# Plot parameters
params = {'axes.labelsize': 10,
'axes.titlesize': 10,
'font.size': 12,
'legend.fontsize': 12,
'xtick.labelsize': 10,
'ytick.labelsize': 10,
'text.usetex': True,
'figure.figsize' : (9.90,6.45),
'figure.subplot.left' : 0.045,
'figure.subplot.right' : 0.99,
'figure.subplot.bottom' : 0.05,
'figure.subplot.top' : 0.99,
'figure.subplot.wspace' : 0.15,
'figure.subplot.hspace' : 0.12,
'lines.markersize' : 6,
'lines.linewidth' : 3.,
'text.latex.unicode': True
}
rcParams.update(params)
rc('font',**{'family':'sans-serif','sans-serif':['Times']})
snap = int(sys.argv[1])
# Read the simulation data
sim = h5py.File("sodShock_%03d.hdf5"%snap, "r")
boxSize = sim["/Header"].attrs["BoxSize"][0]
time = sim["/Header"].attrs["Time"][0]
scheme = sim["/HydroScheme"].attrs["Scheme"]
kernel = sim["/HydroScheme"].attrs["Kernel function"]
neighbours = sim["/HydroScheme"].attrs["Kernel target N_ngb"]
eta = sim["/HydroScheme"].attrs["Kernel eta"]
x = sim["/PartType0/Coordinates"][:,0]
v = sim["/PartType0/Velocities"][:,0]
u = sim["/PartType0/InternalEnergy"][:]
S = sim["/PartType0/Entropy"][:]
P = sim["/PartType0/Pressure"][:]
rho = sim["/PartType0/Density"][:]
N = 1000 # Number of points
x_min = -1.
x_max = 1.
x += x_min
# ---------------------------------------------------------------
# Don't touch anything after this.
# ---------------------------------------------------------------
c_L = sqrt(gas_gamma * P_L / rho_L) # Speed of the rarefaction wave
c_R = sqrt(gas_gamma * P_R / rho_R) # Speed of the shock front
# Helpful variable
Gama = (gas_gamma - 1.) / (gas_gamma + 1.)
beta = (gas_gamma - 1.) / (2. * gas_gamma)
# Characteristic function and its derivative, following Toro (2009)
def compute_f(P_3, P, c):
u = P_3 / P
if u > 1:
term1 = gas_gamma*((gas_gamma+1.)*u + gas_gamma-1.)
term2 = sqrt(2./term1)
fp = (u - 1.)*c*term2
dfdp = c*term2/P + (u - 1.)*c/term2*(-1./term1**2)*gas_gamma*(gas_gamma+1.)/P
else:
fp = (u**beta - 1.)*(2.*c/(gas_gamma-1.))
dfdp = 2.*c/(gas_gamma-1.)*beta*u**(beta-1.)/P
return (fp, dfdp)
# Solution of the Riemann problem following Toro (2009)
def RiemannProblem(rho_L, P_L, v_L, rho_R, P_R, v_R):
P_new = ((c_L + c_R + (v_L - v_R)*0.5*(gas_gamma-1.))/(c_L / P_L**beta + c_R / P_R**beta))**(1./beta)
P_3 = 0.5*(P_R + P_L)
f_L = 1.
while fabs(P_3 - P_new) > 1e-6:
P_3 = P_new
(f_L, dfdp_L) = compute_f(P_3, P_L, c_L)
(f_R, dfdp_R) = compute_f(P_3, P_R, c_R)
f = f_L + f_R + (v_R - v_L)
df = dfdp_L + dfdp_R
dp = -f/df
prnew = P_3 + dp
v_3 = v_L - f_L
return (P_new, v_3)
# Solve Riemann problem for post-shock region
(P_3, v_3) = RiemannProblem(rho_L, P_L, v_L, rho_R, P_R, v_R)
# Check direction of shocks and wave
shock_R = (P_3 > P_R)
shock_L = (P_3 > P_L)
# Velocity of shock front and and rarefaction wave
if shock_R:
v_right = v_R + c_R**2*(P_3/P_R - 1.)/(gas_gamma*(v_3-v_R))
else:
v_right = c_R + 0.5*(gas_gamma+1.)*v_3 - 0.5*(gas_gamma-1.)*v_R
if shock_L:
v_left = v_L + c_L**2*(P_3/p_L - 1.)/(gas_gamma*(v_3-v_L))
else:
v_left = c_L - 0.5*(gas_gamma+1.)*v_3 + 0.5*(gas_gamma-1.)*v_L
# Compute position of the transitions
x_23 = -fabs(v_left) * time
if shock_L :
x_12 = -fabs(v_left) * time
else:
x_12 = -(c_L - v_L) * time
x_34 = v_3 * time
x_45 = fabs(v_right) * time
if shock_R:
x_56 = fabs(v_right) * time
else:
x_56 = (c_R + v_R) * time
# Prepare arrays
delta_x = (x_max - x_min) / N
x_s = arange(x_min, x_max, delta_x)
rho_s = zeros(N)
P_s = zeros(N)
v_s = zeros(N)
# Compute solution in the different regions
for i in range(N):
if x_s[i] <= x_12:
rho_s[i] = rho_L
P_s[i] = P_L
v_s[i] = v_L
if x_s[i] >= x_12 and x_s[i] < x_23:
if shock_L:
rho_s[i] = rho_L*(Gama + P_3/P_L)/(1. + Gama * P_3/P_L)
P_s[i] = P_3
v_s[i] = v_3
else:
rho_s[i] = rho_L*(Gama * (0. - x_s[i])/(c_L * time) + Gama * v_L/c_L + (1.-Gama))**(2./(gas_gamma-1.))
P_s[i] = P_L*(rho_s[i] / rho_L)**gas_gamma
v_s[i] = (1.-Gama)*(c_L -(0. - x_s[i]) / time) + Gama*v_L
if x_s[i] >= x_23 and x_s[i] < x_34:
if shock_L:
rho_s[i] = rho_L*(Gama + P_3/P_L)/(1+Gama * P_3/p_L)
else:
rho_s[i] = rho_L*(P_3 / P_L)**(1./gas_gamma)
P_s[i] = P_3
v_s[i] = v_3
if x_s[i] >= x_34 and x_s[i] < x_45:
if shock_R:
rho_s[i] = rho_R*(Gama + P_3/P_R)/(1. + Gama * P_3/P_R)
else:
rho_s[i] = rho_R*(P_3 / P_R)**(1./gas_gamma)
P_s[i] = P_3
v_s[i] = v_3
if x_s[i] >= x_45 and x_s[i] < x_56:
if shock_R:
rho_s[i] = rho_R
P_s[i] = P_R
v_s[i] = v_R
else:
rho_s[i] = rho_R*(Gama*(x_s[i])/(c_R*time) - Gama*v_R/c_R + (1.-Gama))**(2./(gas_gamma-1.))
P_s[i] = p_R*(rho_s[i]/rho_R)**gas_gamma
v_s[i] = (1.-Gama)*(-c_R - (-x_s[i])/time) + Gama*v_R
if x_s[i] >= x_56:
rho_s[i] = rho_R
P_s[i] = P_R
v_s[i] = v_R
# Additional arrays
u_s = P_s / (rho_s * (gas_gamma - 1.)) #internal energy
s_s = P_s / rho_s**gas_gamma # entropic function
# Plot the interesting quantities
figure()
# Velocity profile --------------------------------
subplot(231)
plot(x, v, '.', color='r')
plot(x_s, v_s, '--', color='k', alpha=0.8, lw=1.2)
xlabel("$x$", labelpad=0)
ylabel("$v_x$", labelpad=0)
xlim(-0.5, 0.5)
ylim(-0.1, 0.95)
# Density profile --------------------------------
subplot(232)
plot(x, rho, '.', color='r')
plot(x_s, rho_s, '--', color='k', alpha=0.8, lw=1.2)
xlabel("$x$", labelpad=0)
ylabel("$\\rho$", labelpad=0)
xlim(-0.5, 0.5)
ylim(0.05, 1.1)
# Pressure profile --------------------------------
subplot(233)
plot(x, P, '.', color='r')
plot(x_s, P_s, '--', color='k', alpha=0.8, lw=1.2)
xlabel("$x$", labelpad=0)
ylabel("$P$", labelpad=0)
xlim(-0.5, 0.5)
ylim(0.01, 1.1)
# Internal energy profile -------------------------
subplot(234)
plot(x, u, '.', color='r')
plot(x_s, u_s, '--', color='k', alpha=0.8, lw=1.2)
xlabel("$x$", labelpad=0)
ylabel("$u$", labelpad=0)
xlim(-0.5, 0.5)
ylim(0.8, 2.2)
# Entropy profile ---------------------------------
subplot(235)
plot(x, S, '.', color='r')
plot(x_s, s_s, '--', color='k', alpha=0.8, lw=1.2)
xlabel("$x$", labelpad=0)
ylabel("$S$", labelpad=0)
xlim(-0.5, 0.5)
ylim(0.8, 3.8)
# Information -------------------------------------
subplot(236, frameon=False)
text(-0.49, 0.9, "Sod shock with $\\gamma=%.3f$ in 2D at $t=%.2f$"%(gas_gamma,time), fontsize=10)
text(-0.49, 0.8, "Left:~~ $(P_L, \\rho_L, v_L) = (%.3f, %.3f, %.3f)$"%(P_L, rho_L, v_L), fontsize=10)
text(-0.49, 0.7, "Right: $(P_R, \\rho_R, v_R) = (%.3f, %.3f, %.3f)$"%(P_R, rho_R, v_R), fontsize=10)
plot([-0.49, 0.1], [0.62, 0.62], 'k-', lw=1)
text(-0.49, 0.5, scheme, fontsize=10)
text(-0.49, 0.4, kernel, fontsize=10)
text(-0.49, 0.3, "$%.2f$ neighbours ($\\eta=%.3f$)"%(neighbours, eta), fontsize=10)
xlim(-0.5, 0.5)
ylim(0, 1)
xticks([])
yticks([])
savefig("SodShock.png", dpi=200)
#!/bin/bash
# Generate the initial conditions if they are not present.
if [ ! -e glassPlane_128.hdf5 ]
then
echo "Fetching initial glass file for the Sod shock example..."
./getGlass.sh
fi
if [ ! -e sodShock.hdf5 ]
then
echo "Generating initial conditions for the Sod shock example..."
python makeIC.py
fi
# Run SWIFT
../swift -s -t 1 sodShock.yml
python plotSolution.py 1
# Define the system of units to use internally.
InternalUnitSystem:
UnitMass_in_cgs: 1 # Grams
UnitLength_in_cgs: 1 # Centimeters
UnitVelocity_in_cgs: 1 # Centimeters per second
UnitCurrent_in_cgs: 1 # Amperes
UnitTemp_in_cgs: 1 # Kelvin
# Parameters governing the time integration
TimeIntegration:
time_begin: 0. # The starting time of the simulation (in internal units).
time_end: 0.2 # The end time of the simulation (in internal units).
dt_min: 1e-7 # The minimal time-step size of the simulation (in internal units).
dt_max: 1e-2 # The maximal time-step size of the simulation (in internal units).
# Parameters governing the snapshots
Snapshots:
basename: sodShock # Common part of the name of output files
time_first: 0. # Time of the first output (in internal units)
delta_time: 0.2 # Time difference between consecutive outputs (in internal units)
# Parameters governing the conserved quantities statistics
Statistics:
delta_time: 1e-2 # Time between statistics output
# Parameters for the hydrodynamics scheme
SPH:
resolution_eta: 1.2348 # Target smoothing length in units of the mean inter-particle separation (1.2348 == 48Ngbs with the cubic spline kernel).
delta_neighbours: 0.1 # The tolerance for the targetted number of neighbours.
max_smoothing_length: 0.02 # Maximal smoothing length allowed (in internal units).
CFL_condition: 0.1 # Courant-Friedrich-Levy condition for time integration.
# Parameters related to the initial conditions
InitialConditions:
file_name: ./sodShock.hdf5 # The file to read
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment