Skip to content
Snippets Groups Projects
Commit 620d26d3 authored by Matthieu Schaller's avatar Matthieu Schaller
Browse files

Added the short-range correction equations to the FMM pdf documentation.

parent 80417d31
Branches
Tags
1 merge request!387Documentation of the FMM-MM code
\subsection{Coupling the FMM to a mesh for periodic long-range forces}
\label{ssec:mesh_summary}
\begin{equation}
S(x) = \frac{e^x}{1 + e^x}
\end{equation}
\begin{align}
\varphi_s(r) &= \frac{1}{r}\left[2 - 2S\left(\frac{2r}{r_s}\right)\right] \nonumber\\
&= \frac{1}{r}\left[2 - \frac{2e^{\frac{2r}{r_s}}}{1+e^{\frac{2r}{r_s}}}\right]
\end{align}
\begin{align}
|\mathbf{f}_s(r)| &= \frac{1}{r^2}\left[\frac{4r}{r_s}S'\left(\frac{2r}{r_s}\right) - 2S\left(\frac{2r}{r_s}\right) + 2\right] \nonumber \\
&= \frac{1}{r^2}\left[\frac{4r}{r_s}\frac{e^{\frac{2r}{r_s}}}{(1+e^{\frac{2r}{r_s}})^2} - \frac{2e^{\frac{2r}{r_s}}}{1+e^{\frac{2r}{r_s}}} + 2\right]
\end{align}
\begin{equation}
\tilde\varphi_l(k) = \frac{1}{k^2}\left[\frac{\upi}{2}kr_s\textrm{csch}\left(\frac{\upi}{2}kr_s\right) \right]
\end{equation}
\begin{figure}
\includegraphics[width=\columnwidth]{potential_short.pdf}
\caption{aa}
......@@ -9,7 +26,14 @@
\begin{figure}
\includegraphics[width=\columnwidth]{potential_long.pdf}
\includegraphics[width=\columnwidth]{force_short.pdf}
\caption{bb}
\label{fig:fmm:force_short}
\end{figure}
\begin{figure}
\includegraphics[width=\columnwidth]{potential_long.pdf}
\caption{cc}
\label{fig:fmm:potential_long}
\end{figure}
......@@ -67,56 +67,42 @@ phi_newton = 1. / r
phit_newton = 1. / k**2
force_newton = 1. / r**2
def smoothstep(x): #S_2(x)
ret = 6*x**5 - 15*x**4 + 10*x**3
#ret = 3*x**2 - 2*x**3
ret[x < 0] = 0.
ret[x > 1] = 1.
return ret
def my_exp(x):
#return 1. + x + (x**2 / 2.) + (x**3 / 6.) + (x**4 / 24.) + (x**5 / 120.)# + (x**6 / 720.)
return exp(x)
return 1. + x + (x**2 / 2.) + (x**3 / 6.) + (x**4 / 24.) + (x**5 / 120.)# + (x**6 / 720.)
#return exp(x)
def csch(x): # hyperbolic cosecant
return 1. / sinh(x)
def sigmoid(x):
return 1. / (1. + 1./my_exp(x))
#return x / sqrt(1. + x**2)
return my_exp(x) / (my_exp(x) + 1.)
def d_sigmoid(x):
return my_exp(x) / ((my_exp(x) + 1)**2)
def swift_corr(x):
#return 2. * smoothstep(x/4. + 1./2.) - 1.
#return sigmoid(4. * x)
return 2 * sigmoid( 4 * x ) - 1
def d_swift_corr(x):
return 2 * d_sigmoid( 4 * x )
def csch(x): # hyperbolic cosecant
return 1. / sinh(x)
figure()
x = linspace(-4, 4, 100)
plot(x, special.erf(x), '-', color=colors[0])
plot(x, swift_corr(x), '-', color=colors[1])
plot(x, x, '-', color=colors[2])
ylim(-1.1, 1.1)
xlim(-4.1, 4.1)
#plot(x, exp(x), '-', color=colors[0])
#plot(x, my_exp(x), '-', color=colors[1])
savefig("temp.pdf")
#figure()
#x = linspace(-4, 4, 100)
#plot(x, special.erf(x), '-', color=colors[0])
#plot(x, swift_corr(x), '-', color=colors[1])
#plot(x, x, '-', color=colors[2])
#ylim(-1.1, 1.1)
#xlim(-4.1, 4.1)
#savefig("temp.pdf")
# Correction in real space
corr_short_gadget2 = special.erf(r / (2.*r_s))
corr_long_gadget2 = exp(-k**2*r_s**2)
corr_short_swift = swift_corr(r / (2.*r_s))
#corr_long_swift = k * r_s * math.pi / (2. * sinh(0.5 * math.pi * r_s * k))
corr_long_swift = math.pi * k * r_s * csch(0.5 * math.pi * r_s * k) / 2.
eta_short_gadget2 = special.erfc(r / 2.*r_s) + (r / (r_s * math.sqrt(math.pi))) * exp(-r**2 / (4.*r_s**2))
eta_short_swift = (2. * r * d_swift_corr(r / (2.*r_s)) / r_s) - 2*sigmoid(2*r / (r_s)) + 2.
eta_short_swift = 4. * (r / r_s) * d_sigmoid(2. * r / r_s) - 2. * sigmoid(2 * r / r_s) + 2.
# Corection in Fourier space
corr_long_gadget2 = exp(-k**2*r_s**2)
corr_long_swift = math.pi * k * r_s * csch(0.5 * math.pi * r_s * k) / 2.
# Shortrange term2
# Shortrange term
phi_short_gadget2 = (1. / r ) * (1. - corr_short_gadget2)
phi_short_swift = (1. / r ) * (1. - corr_short_swift)
force_short_gadget2 = (1. / r**2) * eta_short_gadget2
......@@ -149,18 +135,17 @@ legend(loc="upper right", frameon=True, handletextpad=0.1, handlelength=3.2, fon
# Correction
subplot(312, xscale="log", yscale="log")
#plot(r_rs, np.ones(np.size(r)), '--', lw=1.4, color=colors[0])
plot(r_rs, np.ones(np.size(r)), '--', lw=1.4, color=colors[0])
plot(r_rs, 1. - corr_short_gadget2, '-', lw=1.4, color=colors[2])
plot(r_rs, 1. - corr_short_swift, '-', lw=1.4, color=colors[3])
#plot(r_rs, np.zeros(np.size(r)), 'k--', alpha=0.5, lw=0.5)
plot(r_rs, np.ones(np.size(r)), 'k--', alpha=0.5, lw=0.5)
plot(r_rs, np.ones(np.size(r))*0.01, 'k--', alpha=0.5, lw=0.5)
plot(r_rs, np.ones(np.size(r))*0.01, 'k:', alpha=0.5, lw=0.5)
plot([1., 1.], [-1e5, 1e5], 'k-', alpha=0.5, lw=0.5)
yticks([1e-2, 1e-1, 1], ["$0.01$", "$0.1$", "$1$"])
xlim(1.1*r_min/r_s, 0.9*r_max/r_s)
ylim(3e-3, 1.5)
ylabel("$\\chi_s(r)$", labelpad=-3)
#ylabel("$\\chi_s(r)$", labelpad=-3)
ylabel("$\\varphi_s(r) \\times r$", labelpad=-2)
# 1 - Correction
subplot(313, xscale="log", yscale="log")
......@@ -168,12 +153,13 @@ plot(r_rs, corr_short_gadget2, '-', lw=1.4, color=colors[2])
plot(r_rs, corr_short_swift, '-', lw=1.4, color=colors[3])
plot([1., 1.], [1e-5, 1e5], 'k-', alpha=0.5, lw=0.5)
plot(r_rs, np.ones(np.size(r)), 'k--', alpha=0.5, lw=0.5)
plot(r_rs, np.ones(np.size(r))*0.01, 'k--', alpha=0.5, lw=0.5)
plot(r_rs, np.ones(np.size(r)), 'k:', alpha=0.5, lw=0.5)
plot(r_rs, np.ones(np.size(r))*0.01, 'k:', alpha=0.5, lw=0.5)
xlim(1.1*r_min/r_s, 0.9*r_max/r_s)
ylim(3e-3, 1.5)
ylabel("$1 - \\chi_s(r)$", labelpad=-2)
#ylabel("$1 - \\chi_s(r)$", labelpad=-2)
ylabel("$1 - \\varphi_s(r) \\times r$", labelpad=-2)
yticks([1e-2, 1e-1, 1], ["$0.01$", "$0.1$", "$1$"])
xlabel("$r / r_s$", labelpad=-3)
......@@ -200,16 +186,17 @@ legend(loc="upper right", frameon=True, handletextpad=0.1, handlelength=3.2, fon
# Correction
subplot(312, xscale="log", yscale="log")
plot(r_rs, np.ones(np.size(r)), '--', lw=1.4, color=colors[0])
plot(r_rs, eta_short_gadget2, '-', lw=1.4, color=colors[2])
plot(r_rs, eta_short_swift, '-', lw=1.4, color=colors[3])
plot(r_rs, np.ones(np.size(r)), 'k--', alpha=0.5, lw=0.5)
plot(r_rs, np.ones(np.size(r))*0.01, 'k--', alpha=0.5, lw=0.5)
plot(r_rs, np.ones(np.size(r))*0.01, 'k:', alpha=0.5, lw=0.5)
plot([1., 1.], [-1e5, 1e5], 'k-', alpha=0.5, lw=0.5)
yticks([1e-2, 1e-1, 1], ["$0.01$", "$0.1$", "$1$"])
xlim(1.1*r_min/r_s, 0.9*r_max/r_s)
ylim(3e-3, 1.5)
ylabel("$\\eta_s(r)$", labelpad=-3)
#ylabel("$\\eta_s(r)$", labelpad=-3)
ylabel("$|\\mathbf{f}_s(r)|\\times r^2$", labelpad=-2)
# 1 - Correction
subplot(313, xscale="log", yscale="log")
......@@ -217,12 +204,13 @@ plot(r_rs, 1. - eta_short_gadget2, '-', lw=1.4, color=colors[2])
plot(r_rs, 1. - eta_short_swift, '-', lw=1.4, color=colors[3])
plot([1., 1.], [1e-5, 1e5], 'k-', alpha=0.5, lw=0.5)
plot(r_rs, np.ones(np.size(r)), 'k--', alpha=0.5, lw=0.5)
plot(r_rs, np.ones(np.size(r))*0.01, 'k--', alpha=0.5, lw=0.5)
plot(r_rs, np.ones(np.size(r)), 'k:', alpha=0.5, lw=0.5)
plot(r_rs, np.ones(np.size(r))*0.01, 'k:', alpha=0.5, lw=0.5)
xlim(1.1*r_min/r_s, 0.9*r_max/r_s)
ylim(3e-3, 1.5)
ylabel("$1 - \\eta_s(r)$", labelpad=-2)
#ylabel("$1 - \\eta_s(r)$", labelpad=-2)
ylabel("$1 - |\\mathbf{f}_s(r)|\\times r^2$", labelpad=-3)
yticks([1e-2, 1e-1, 1], ["$0.01$", "$0.1$", "$1$"])
xlabel("$r / r_s$", labelpad=-3)
......@@ -231,7 +219,7 @@ savefig("force_short.pdf")
##################################################################################################
figure()
subplot(211, xscale="log", yscale="log")
subplot(311, xscale="log", yscale="log")
# Potential
plot(k_rs, phit_newton, '--', lw=1.4, label="${\\rm Newtonian}$", color=colors[0])
......@@ -245,22 +233,35 @@ legend(loc="lower left", frameon=True, handletextpad=0.1, handlelength=3.2, font
xlim(1.1*r_min/ r_s, 0.9*r_max / r_s)
ylim(1.1/r_max**2, 0.9/r_min**2)
ylabel("$\\tilde{\\varphi_l}(k)$", labelpad=-3)
yticks([1e-4, 1e-2, 1e0, 1e2], ["$10^{-4}$", "$10^{-2}$", "$10^{0}$", "$10^{2}$"])
subplot(212, xscale="log", yscale="log")
subplot(312, xscale="log", yscale="log")
# Potential normalized
plot(k_rs, phit_newton * k**2, '--', lw=1.4, label="${\\rm Newtonian}$", color=colors[0])
plot(k_rs, phit_long_gadget2 * k**2, '-', lw=1.4, label="${\\rm Gadget}$", color=colors[2])
plot(k_rs, phit_long_swift * k**2, '-', lw=1.4, label="${\\rm SWIFT}$", color=colors[3])
plot(k_rs, -phit_long_swift * k**2, ':', lw=1.4, label="${\\rm SWIFT}$", color=colors[3])
plot([1., 1.], [1e-5, 1e5], 'k-', alpha=0.5, lw=0.5)
plot(r_rs, np.ones(np.size(r))*0.01, 'k--', alpha=0.5, lw=0.5)
plot(r_rs, np.ones(np.size(r))*0.01, 'k:', alpha=0.5, lw=0.5)
xlim(1.1*r_min/ r_s, 0.9*r_max / r_s)
ylim(3e-3, 1.5)
ylabel("$k^2 \\times \\tilde{\\varphi_l}(k)$", labelpad=-3)
yticks([1e-2, 1e-1, 1], ["$0.01$", "$0.1$", "$1$"])
subplot(313, xscale="log", yscale="log")
plot(k_rs, 1. - phit_long_gadget2 * k**2, '-', lw=1.4, label="${\\rm Gadget}$", color=colors[2])
plot(k_rs, 1. - phit_long_swift * k**2, '-', lw=1.4, label="${\\rm SWIFT}$", color=colors[3])
plot([1., 1.], [1e-5, 1e5], 'k-', alpha=0.5, lw=0.5)
plot(r_rs, np.ones(np.size(r)), 'k:', alpha=0.5, lw=0.5)
plot(r_rs, np.ones(np.size(r))*0.01, 'k:', alpha=0.5, lw=0.5)
xlim(1.1*r_min/ r_s, 0.9*r_max / r_s)
ylim(3e-3, 1.5)
ylabel("$1 - k^2 \\times \\tilde{\\varphi_l}(k)$", labelpad=-3)
yticks([1e-2, 1e-1, 1], ["$0.01$", "$0.1$", "$1$"])
xlabel("$k \\times r_s$", labelpad=0)
savefig("potential_long.pdf")
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment