Skip to content
Snippets Groups Projects
Commit 53b3e942 authored by Matthieu Schaller's avatar Matthieu Schaller
Browse files

Added plot of the EOS assumed by the EAGLE SF model to the RTD docs.

parent db914d8f
No related branches found
No related tags found
1 merge request!766Eagle SF documentation - step 1
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg version="1.1" id="Layer_1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" x="0px" y="0px" width="630px" height="630px" viewBox="0 0 630 630" enable-background="new 0 0 630 630" xml:space="preserve"> <image id="image0" width="630" height="630" x="0" y="0"
xlink:href="
AAB6JgAAgIQAAPoAAACA6AAAdTAAAOpgAAA6mAAAF3CculE8AAAAAmJLR0QA/4ePzL8AAAAJcEhZ
cwAAHsIAAB7CAW7QdT4AAAAHdElNRQfjAxULNQNLDmIcAABSoklEQVR42u2deWAT1drGn6RlF5gW
N1xhinovdYG0uNwLLjApKAooaasoCiop4o6SgPq5K6S4K0gK4sZlS1DZFJoAKuhVIEGvolcgAQUv
bjSh7LTN+f6YJM3aJk0mZzI9vz/orOe8M3k4c5b3vEdFwGBkGjVtAxitESY7BgWY7BgUyJUy8fo9
f+IkSXNgZBf1f+KC9pBSdoVA3Xbaj8mQHRv7gX1kGVSQrrTbCtRvuRgbu9N+RAY91umPot87XYL7
ey/GSYDEdbvc7kD3M2g/OoMaljvqMGRJx7BjuQD7yDJaSCLDDG/dWIfSpR1jnGGyY7SEBhVq9x5r
+pqX7vThjgVtY51ismO0AJKDacJZxfqmLnniIeDB2TkxTzLZMVqACs9NL365eG6/uFf4HngaePpF
VeyzrDOX0QJI7eJbHj3Zu+KEfd1iX1B/57vAq/fFu5+VdowWoPrju6KTa//Jz3llYszzx8rfhfrt
uKpjpR0jWRpyAHRUdfadz1tO2vFDfU70h/TQ9Ta0WXhD/DRYacdIjvqcowvha9PvkZMv/uikn7YX
xSi4vCU2dFzRhOqY7BjJ4cutuchSrz75pp863d3F/qRrDKIKu9+v/BJdbSVNpcI+soykUO8972BZ
7vG29/+5qIRrc8L8y6Ou+EXYjpNX92kyFZWkTu17zsRuNjimIHxq1L3ww6e7UdcGP3y7s7fmLF/k
93KbsBtn2s+NfX9AEEx2jMQhqk8/fRJ/jih9AH65kchP7DeD/8A59rPiJBAQBKvbMRJBLJ1UKwd+
cQQn/O0Lv3BIVMXuyyv/wEXrz2ouOSY7RvMQHIYPwI47O2976T8dJi6dLx6Pak3YtPtx2bpTmk2Q
yY7RPCrHVevVAE6y775n0yBrwYtv7Yl53QfXHobWltd8gqwly0iAbzcvHECg6toVk8bOuf8dQg7E
uurd2324fkG7BNJjsmMkwO2nDcHBzj41iOrEyZeue8Oz5u/RF712P3DbnIQUxT6yjOZpwBDc0Wub
2gcVCK586t/v3hN1DXnmfuDeuYmVY0x2jObJAUYuVGt3q32ACvCdOxr1EZeQhx8HHn81QT0x2TES
4ZkP5y3pPqhGTQA0qBFVO2sY9xLw4lOqBJNjsmMkwgNbhv/jldxBx1S19voYDsPHb3oLqtkTE06O
yY7RDHUgQOeL1Lh4prdk6+NDv4y+5PBwC9osvDPxNJnsGE3RQNBmz41/AQDUV1Rtu/S1d6MH//cP
XoUOS8uSSDZNsnPSfj0MSaib8/ChXUXf+6eIqU4/uW7NjSRyGP/PgRvQefXVyaSbuuxKVSqVykz7
/TAkoc1JL4+74BLLaQBAsOOBXZ9f5YscEttzuRMnrhuQVLopdxe77QIAI+33w5AC4rvh4Re7T+wN
4Jcz1OTnbRsuaIhsUOwQfsbptr8nl3DKsjPN1tF+OQypUOV8+MIF333Rtyv+nJr/nOrS70+IUt13
2t9RYO+RZMIpf2QXw0v75TCkgQCHvp6w/tHH5+zHSV+tP4pOJ5BI1X11xe84f32PZJNOvLTzgotx
tNJbCt4s0H5DjPTjU6Ou07RDnZ7Z92iXmzt2P+RDtKfT2mGHcPEn+UmnnWhp5zXmbQ7uWLXaIq0d
AKAz6zm3tpL2K2KknQY13hh2x7FOPswsnXD3/62/LEYInaXXHMJAe/KqA0hCGADYAjs62AgxwRTY
NwOO2LftBnYnlgFDftyn6nL1HkLqCRl96kk6QnyRF7yfAww7kkySAUEkJjuLy9IoOxMMhBAiNOrQ
LB6JnwsjC3lT9eov2wkh5Cgh+3YTUh95wQwANx9PKs3kZEeIJyg7D+AhhBAb+OBZTtd0LowsZFz/
vYQQcoyQ44T4olX3PIC7GpJLMyCI5FuyVeA5ABDgtgaOFbfk886QNUe3FJzqA8HtN6MNoEJEG5ZM
fgSYMqOFPSHJ37YI/narBosCx9wFtF8SI93kqH+DqkGFP7fGitzZcJcJmPZ8oo5OkSQvOyf8GsuH
23/IXWOg/ZIYacbXZlz1ElUOtv3RN4bs6kaboZrV8rGppEcpnAj033Fww1mkm6LxVqyJuCgwr2gv
pXfGSAFxIEKN4v63bLt05/Kdb0SXTUdKVyL3vZtankfSsqsJbuXDC15nt+p4Cxdx0ZmU3hgjdXw5
u1f+94LzL0Gfl+c/mnPKGUv+GXVJ7bDP0M56bQqZJC07L+BvP3CAm7fQfkuMNKP+9lr14aOouglF
RXf8dRbHRUU52Xf1Jpyw/MpUMkladlzoTrwG7G7/370XZ+hdMVLGry5f7cS+Uy7bevnYoV18qt4A
ojo7/qf9Afmr+iWdQShJy44Pfme9iDlKCwAs3E7W4VNv33ne2YCafPX4Zfj46HsbzriQANHDsG5h
J7rbClPLLemWLI+Ay0kNeNrvipE21Gt6D/kQAP57ZBAeftRctuj2I7Gu29p/J3puSFF1LfC30zhd
4oYbzPFEORx+ZNCQ0UB9bq9T33nn7UXXe7b16BDjss1D9qF39emp5pZ8v105RN8TOFHa1HWFhYWF
AzPzyhhJsv+lqK64oz/2f6DbK4dzccI/Zs6vvn7/8j2Xxrjxs4H7UPxZyqprgez0cHsBwA6elXbZ
yZ8DH1oReSy/12eYOHEDfB2m8+pXn739gUsejr5x5ZADuGLNiWkwIcExXFejB4oh4IFiSXjklyEn
9vwNT0U6MTX4Pj7hzE7zDhBST7Y93ufka16O4XIyPxcYejiVrJP1QLGgUWUCHISYG/3tms+FISO2
98ArIbuiAOtI3fmqqwipJ6SBEHKkIYbqzCrgxuQcnSIJCCKxJoV1UxUwblOBuLSZrcoIwKGh+Z1g
tBTfiF/mjg3ZVcPcceDpuSiuKbU89GJOQ44a9bntfYiaNjHdAOhn5iSVWVwk/Y/FSjsZ8pU1fP8G
VbuthPxx+Re7n1Q9Efcu3yMAJvlIaiRX2jGUwrq8PpdcEnZki23Geb2Bk2xtVHfufzrv/v/Zzr4y
+j7fvTOB5ye31NEpEulkVwigTrLUGS1iWdnZWyN+8p8PlhRsf2oe2gKn33vkQd/2t9ZG31c/dh7w
xt1ps4OVdq2Jf92WvyjyFx+Q9+bEf5wlLtDZc+KvD7VfEe1ycvTGpch5e3QaLZG0GsHqdrJihurM
/0Yeqz/6lqqN7if/nAjXJd2+I1HzIw4MBNp+mA4LWN2u9VF9d4zlcdTtOqnrzzxXdO48NOYHZ6+o
eBM113yNTksHpdMUFt+u9SA8HmN5HJXlptJbXnkdOT4AnW78MVp1v135NTh7WlXH6nathYZ5o9VP
xTrR48kHvR3v73qrGvW5mID6SEXsElw4pfrC9FrDZNc6qLttwaEJkQd9aoD069Om84MHxuRfa1s5
4dxoQfxXuwdn2c9JszlMdq2CI2Urrr8j8mBDDv440K1Tm7o2500+csMTr1wSYzVO5+C/cJ4t7XNj
WL9da+DAsE9vfSvypyY5eOzDH8/o916nujYXPPj9/5UuQtS0ifXX1qLv6pPSbhBrUrQGbvr03rej
ChgVnpw9bNFNq85HG1/Ddve9i1AfqYZVg2vRf136Vcf67VoFjmdiDaYeuuCev4jnxCG/E7JJdX8M
l5PFbYDBh9JpSMtjoDCyjJ0OaB6LNZj6v++Luv1W9HfzG7ehePkriOo5mXtjHXTLOiaSR7Iw2Smd
H/pfXRv7TLd2DQcvOmfZWW7HcQyNVt3Ld/hw+8K2khjFZKdwNl/+x+tdYp7x+S596rQhH3I/bCtu
SxAV0emJicCDc9LkXhcJk52y+WzgoaXlsU+pu92+p8v19R89sm189OrrvgeeBp56MV2OTpGwfjtF
s3VIm9WXxzlHVKP/fPuGdl26L7uURMqrftw7wCv3S2YXk52i6X33TUXxzql86onDDn7d6/xTorrr
jo36AOq3xkhnF+suVjC2gTkvNHGaoGawsSJGlJND19vQZuENElrG6nbK5YWSJ2IcDa5U15Czu//O
V443RFXsvCU2dFghpeokLO22AtjDAt1Rg/zfc+dHeaH71FABRAXAl/PjwN8HLo/uIPlj8DfouvKf
ieTRYljdTqH47psRvTxOQw5W//jdqCtyAag3DvFeuyza0ekX7TacVN1HWuuY7BTKwzOuWto54pgv
B5Pf6njaNZW3dEPD7ksx+t1o1W0TduNM23kSW8dkp1Bu32duH3lMjWemvz52w+D/U489IafHrfUx
VPfN4D8Qw/U93ahI6mnEZ8+Z2M1CLGaeg9v7xjz++2W8/bOB99f+a27vbcPbIlp1X16zHxdWnyKZ
YQFBsNJOgXiu+eE/Z0ceJCqg3YXt/3x61MOn/l7R65t5o+CL/PVtIw7jspV50lvIZKc8fhv8n8lR
n8n6XADc3Jxdny88DZ2PnnbHqOjesw9vPA7hwxMyYCKTneL4WdgxdXLU0dyjN+VdPD6/wdJ+JDZ9
98B9Z0S7nLx7uw/XL2iXCRuZ7JTGH/1/fXN85MGGHMxZOnRC/T3q9odfw4pdI8+Ijuj0+n1AtOu7
NLDBMaVxkq7fqMhjJOeX97cNWG4t7zp67PuP1XdffElUBHby3P8B976SoVErVtopi+/+1ublqIMN
OZ7hW+tP3KebdVuX4eu3Ef70qMF/MulF4P+eksrRKRI2OKYoVl8/2hx9NOfzlzwz273x7P+NOzDy
vVMGxRj8b6h4C3jhoYzZyUo7JWEd1TlqNixR+TxDD6Hb9QeXvTxl4q5b8t0nqCMLteO3WKCqujNz
hjIPFAXxdnm3z6KW21Jhf7ddW8544+hdg5wv7+UGbOsS9ZsfHmFB7sIMqo7JTkG8dftZG86POEaA
uZr+6y5av+le3PvP+Vfm2fLrI+/bP+QTtF9alklTmeyUQ/8rN0SuYu5Twbcwt1fZ0rM/fe+Zdg/v
b/9g26ihiT8Hrkfn1ddk1FRWt1MIvu3nnbcu6qAaz2//bvL9hTr7FTbtVz3eEaI7ifdo/4sTVxUl
mE2aYKWdMqi/s/jbqIMNatie/vL3FYcmTRr83eWTPvlNQH2k6nb0/y9O+zzDqmOyUwbHbnx7QHQw
sByUTTh92RvHXql7ftwVry18aAmiord+N+BnFGz4e6btZbJTAoeGLSn/KEbUiLUr9v3WaVzJ+jfw
+jkPjJqOhsiek6+v+A3nr++ZcYNZ3U4BHB38xbg3I7+ePjUw8Jfd/Z+d9cCxNbmXnDTjLvgir1k7
7BCiXd8zAJOdAmh32WWVUROsc+sP7jn/xBM/HtRj8v3PPti76tLo6HVLy49h4EedE80mnUgW3Kp3
7969z2GBxqTn12PEFxVHrJ78PryH+pIvj5APVHOJs928wJp2IczLAa47klFbWaAxpbDtstFEFTWE
n/PzBXvv+9Rp3Hzs+rkVPd/fdjOJmg47c3QDbl7SPsFs0kxGxM2QjG9PznkvxuED2p47SenJ3ft+
W3e4X8cNMcq65wHc1ZBADumELYeiDP59zWHriIhjRAW0//30Ho989SGnfeAfH3qc5zXkRLrXTTEB
U57LlKNTJEx2Wc2n15KVQuRBFX46UPyUd6fltsKu45/4scPXZ0YNTTTcbQamGanZzWSX1Zx19pzL
Ig4RFZaUtvl0BBa6Huh6YG3xA8M7Rc1LrBszH6qZ4xPNJf0w2WUxv53K/ydGd93e+ec8ehnwV5f9
OdafJo9CQ+SPfKRsBXLeG5VoNhLAWrLZyxu9vkBUkFc1Xrnlc3UegJ611/W5++/3Rc/VOXDNCrT7
kKbqmOyyFvLcvWfEChoxdyIpO3h7FTD0vb5XPL8mekBs36BPccKq6yhbn4n2MiPt+B5Gn99jnbi/
cBvZdNmwo8cIaSCE1EWe/7U3kP81JatZd3F2Q/Qv/HPdybHOfMudg+IhX3jb1kENX1QP2c4BP6B7
tOt7hmGyy05Up5as5mIcJxi8ZSFwRhf8dNf4jw5GTdb5ob8bPdefn0AOksJastnIYXX7p+vbxDqj
gvDJuK/Pemb4utEX1/7gmhghu81D9qF39em07WelXTayf0hZnapNnJPFj9365kNj80Y/sX7LBfYI
1X02cB+KPqOvOlbaZSF/DXY+ENIpQlSBf8Q97T+6z/lr/js3+3J7LdnfJVR4K3VHcfnyLklkJRWs
tMs6fr3c+eRLjb+bT1X33OpG9xLVcXSaNHbe+zdD7baO7hqquoUjjuKaVXJQHZNd1uHq/+PLTzSq
yac+8I7lyU3B/fq2x26puYUrAvYu/O6u0BurRtWj/MMOtO0HwCI+ZR9tVHPHNu751P+94+c/6+60
+Bdcr8+tvebLv1Z1e/7txasWbeRD7ptuAPQzJVq6LllY3S67OHjCWVtDCyy1u/+FTwsztrQRa3cN
ub8JP1w4G9Pvzved/1NI2Gjy2PPAJBMtR6coMtIpzUgTa0+0RxxZfM6/fYTUEkJIA2kgO85WXVZL
CNn/ya/HQ65quBvAc76E85EK5uaZjSwraxcZ4/W7g5cCvpw3fzh5VAHU28/D4OW59bm+LkNCL6of
Ow944+4kcpIYJrss4l+35a9ujPxPVABRnd15/YCaqoX/6dJ++if/RHf1VZ+gPjeipXj0xqXIeXs0
bfNDYLLLHt68+3R74/I4RAVnN9VZ2qfvONH9x0Wf8qqHhu1te4Knc/RiEwdHrEHbRSNomx8K60DJ
Hjy9NoSpbtqAv5d8etbq644PfNV5+RmnP65ej4bO0U6dNdo16LRyBG3rw2ClXZZAjrebcm/jTGqi
wj1v3nLyhiErB71Y1waoy1X95m2LHEQ5fv5W8h24jy9LLjepYaVdduCbMOyYKmT+vgpPvTn9lekv
9h9hQxsc+72N6ufl53ePcePPA77DKZ/JTHWsAyU7OD4KwsGwI1vPGFxDCPl2KPclOXhH/4/fHaZ6
M8aNP54BnLWNtvlBmJtnNnHkhvkjlncK7jYA4POO56EOF5r66HZ36v3F0Ef2zxuPqHULnQP24LwN
5ySTV0ZgsssCDlyzYrSlMWpEQ07dh3vbCV/PQpsGFE7vUlI78WVMWjyq0Q0lwIar/kKfz2W4SgOT
XRZw8Jd73mls+zXk1Jw3ctqBe86bYUWOD32f/+Nm3D/tqpOjFtbBqpJaxHF9p01GPuWMFKgj5K+Q
Ya0G8vPpl92teoV83qP4M0LqCRnX8d8kRpATsrgNMPgQbfPDYHW7bGHnBZ+gW2M51qDe2uecWW+8
8advwGtbK7+EGuh6rAOiizrMvbEOumUdk8krc2RE3IwWs/U01ZyQ3Qay+YRrt9URQoiP/OvUK9aR
I6sLLtsf48aXAYytSyyTjBEQBJOdvNnULXdh2IFqVc4yQsiRLwghZM7pPWc9edrfa0lUwDDfEwAe
yHQcsWZhsssKPu3cfmXYgUOPXnf2P131xKxaRhoI+bifqv3Q+ug52A33A3iKvqNTJEx2WcHLnT8L
3a0npKHux+7a/5E7VF22kD13/3ak+t0YM//rxgB4hbbxMQgIQkVSqhk2w54zsfuM1JNprfjU+N9p
oQcOqj8drFZ9ffXldf+e+U3h6M9GXPRBPqIX1jl28xKo54xNIqdMERAEcwWQL1WLl3doVF39ng3b
3Wf3zQEuWaLzLNbdCBT98+N1I6MH/w/dUI02C0bSNr8pWAeKbJlesWtfyO467RftX3lqJABcNa/t
Wi/wx7xVhhji8pZUo8NyWauOdaDIFd+jKPxfyO6hwa8SEmyxzlNPOex9TvU4IfWRN/7eB+i6gbb5
cWBzKeSN774ZF3/crXFflVMwCkQV+DjdfGACOfz6Sw9EL6yzW9iGk0Jc3+UJmycrT/bbr1oa4l5H
VFXqE0MHIsZvN2HumOiFdbZpf8EZIa7vMoWVdvIkb11e6EIlKnR7ONzBpANWlSBqbPPbkj9wju1s
2tY3i3Sy2wpgjwx9brKECE/hnzZeHTbq6rv435dEL6zz5VAvLqw+hbbtzcP67bKEIx3CvemIKuoD
C9uIw7hsZR5tU5sgIAjWgZIVEHSIKNpU0T/dh9cehlAtZ9UFYbLLChKJXfJe6XGMWH4CbVMTgslO
Kbx+WwNutVBaMDFZmOyUAXn2PuDet7OlY4LJLjvwwXu4idNk0v8Bj72aNb9m1hjaylGvH/Un4vY6
NOhfBKY/I5vodc2SLaVya+f7ER732SoSW1jHRy+GyjyOto1JwEo7+UMAdLSe9cRncXpZD49YjNwF
2aQ6Jjv541NhG3peZft52lcxdbd/yCdov7SctplJwWQnZ+oBQA3TBPhwzlj7NGeMDry/Bq5H59XX
0DY1OZjs5ExuzWv/BpY/uW55Dmaf9fGGFzfWRF7y6+VOdFt3OW1Lk30w2gYw4uM7WuI866M+hWte
u8XiOXyf6t3rFlpuCL9kh3YXTrP1pm1psjDZyRafWt1RP7Lnoj4879s39P4XUDd0yPkRqvuu5DcU
2HrSNjVp2EdWtqi/vxUduxleWAP0N/5j/o9QY3pleN/dxit+Q+H67FMdk518+enleXPqMPi8mTX7
IUzuPuKr31AY7uq5bpAHF3/WvcU50IPJTrYcG3XSmtPQb/jH363bjatNfw38HeGuKMuuPoir7N1a
mj5NWN1OtlyIJVfV9T35uTVP33Y6cOEl4zTh5/91WwOuW5wlLicRsNJOvvguLl36M/D0thVqoPO7
14d3Fc8c3YCbl2Sn6pjsZIy67dUN7x+DduNiEHQ4KbyreNrdBOPfa9PStGk/Gm0DGE0w+voVx4Du
aIgcnCCTpwCTZ2btr5e1hrcOXvcYoYqOcuKbYAKmTs0eR6dIWJNC1pxSdm6Mo3Vj5kM1czxt41Ig
LbIr5U20n0Oh5LwRo/Z2pGwFct4bRdu2VEjHR9Zupf0UyqVNtEvxgaEr0O7DrFZdWko7VtRJSWQF
bt/Vm3DCsqtom5UaaSjtKpjsMsj/rtiE/DVZrro0lHZOTpNyGoxE2Sm40b36fNpmpErisvOCi3nc
aKP9DK2IH7T/Qw97AW0zUibRj6zXmLc5uGPVaou0dnHbaKT9CK2IzZf/D3/fkP2qQy4wp6nzZV0A
AMbKkGOlVpuASq3JAMDpFWg/Quvhs+sOoGjVibTNSAO5gL4ofpCgNUIXALBW9CsNHqu0GgTAYDNq
BMBoSTQnayAFm4AKuxtcsYUD7EYnL3BeM+33kDTWUnAeaO2w6DKV5UrdUVy+vAvtJ08LhKh2xg9x
HDznAWzBLQ8hhNjAE2IyezweD/SepiMkE0KIxwSDxWIxw0wsEExmPXSE2KAzGzgIoTdZ4iSWJGlK
Jh4eA2cjxASztNmEsDAXuOZwpnKThpBVeJKUnQm8uAFYSPALq2syF0IIIS4xBZiJjiOEED1HiEZH
CHGEyw7mtDxhmpKJi40jxMMZpM0khCoVUH4sY9lJQ0ikdnN+/LIwxrlF8GtN41ykM9UAgFZXwSdc
vArFcBcDQIHXy7nLAWgSv1lmZHBU8IVJwLg3c1JPSB7EkWVZxH5jaQeYxA0BGv9JxPs/H6u0I4Tw
OkIIMcNDBN5FCHG5ghcFqooOQggx8JzgIISDgdM4NJyN6AGLAF4sx/xnbQAcFg14FyEeHQfeEJaM
HnAQA2ALuzB4dwA9YNFxXDBlnSc05UYLGrFxxAQXyQy+RwE8LL+l65IlfKm72VHn8yP2g7JzIPD1
0oHzn0xUdhaPg3ORgOwscBEHIJhCfzuPxQydxWIhhBANDGYNHMQC6DloBJ44DIDGIMAQcpZYzNBA
Z4KJEDP0FgOnCU3GZYKNuMwwh13YeLcfhwHgDQJchBANZzLznCvkhkYLGrFxDugz9Gs13A3guexX
XYTsiiNPF6kjDgRlZwvKTh8sKqNkt9vPxnDZBYoxTk+IKDvi0nOA4Am9OZC+CTZCCC8QAgPRccQB
QlwQCCEGuELOEg9gJsRBCPGYCCE2UU2BZMRCFuawC0PuDlrHE+KChfjLsPCUGy0IYuN4HmGGS0bd
aACvZyQriQmXnWpX+NliVVzZWQCLeMiAuN+YkI94qOxMNjMchBC+UXaEEJcpvEES0ItGQwghehAC
G9HriAt+XRACc8hZ4gl+7YnHoAGC1/izDZFd4MKQuxut81+mEQghxByWcqMFQWzgPXxGWhRHRgA5
72YiJ8mJWPxJuy1EKbWDHPHrglzoThONkVhoBK+DB4Aa8Z98OHkOvIGr8HLRV7u9QeeL/IisOEfo
WSAQ7siu5fRTUIq4lEenHSTQsBEbPDzcfMgN+TEe1sKZSqfEMDzNHByxBm0XjZA8n0zil51ryKrg
odoidxOrVfB+0QBexBmlBXb7/+69OOIEZ4bXreG8/vtRZDABKEZNRErOGgE8ZgNiHiFnawDAWxR6
tvF8hcYBuMOTCc8/+BSzgQj7g+fcAOAUZchFnAy9XgOdxih5R3fN0K/Q6SOFjQX5x2R7Vg8JHNnZ
002IwMW7gRf1AqAGcTs+zvATa8K6sRT8ZgDYxHGAFQDs4Sm5gHEmoMJZo9FoairCbzcDMEIIPxso
iGp4AM7wZAAv4B9ADl4YO22RcrsT8E4Vwm6Ig6nKm85fIwa/XfkVOJvCVOcv7XSLnYK/vPtmkAe8
tU9Z3Ds0TrFtADeSehleK2xeAJuBcqtWyzmsOgDuAl2Bo8qEoDsjgVDVbZPTDOgtWn2Rq4qHHVaD
G24n7ALg1JbarCa+8SysNbABOgDQV2q1m6wwuw0IJsNzU2tcVbDxQuiFwbsD+Zpgy+cXw8YLhkVF
hm5mrzkk5TAL/DcYYBcgcONMkvY6/izswMnVF0mZBRUIIYRYCXEV9COEELtarSohhDgj6oIxRyls
idYgCWnsSoNAiJ4HOMFDCG/Wc9CYxeT89ngE8GLXoEkDXu8hHGABDBpwxAWDBhpL6Fm/35XYPDHx
0JgMHFwhydh4cAYOXNiFgbtDmz8aCwCOEKLnOZ2LhKQcYkHIDRwhNkDSVsWPZwBnbZMyh8wS3pIl
hBAX14+QKrVKNT7W9XHGZJugd+/evc9J9zLGrualriScJwHn/ULbijQSkF2jvx3v2HHxlPEExjdj
FYqNUSQ5A6YCgInNoZCaDVf+iT6fK3KVSkIIIdMJIYS4OLVKVUlCjjTS2F1HiAAHIebAGFki4k4b
raq0W9UB+KeHthVpJbzfzvYwAPBrilWmhxFyJIB1UxUwblOBXjxXZQTgoDCFwm2FLb+1TN2wjqpD
yQedaJshCWIPnXqygHwAC6ebiwHUwDG5IR2pp3s92YoqQONIPR3Zs33uztrVPoz8VzvalqSXgCD8
sovus5el7FoLb49rAICxVUqLFRIQROC5IoclsjeqiwLYLqpOZVSa6oIERin0YejS0AVaWFhYOBAY
OwyYX7gRKHwQeLawBjsKZwBj+gOrC1cD/ccAMwp3oKbwWeDBQmBj4XxgWOu+aa74qSHv0FaHZIj/
n/gdkcd70TasNeMfBsJO2oZIhli3Gz8r8njZ4nSkzup2LeHYRT+JG5On0jYl3QQEIX5ko1SHtKiO
0RIODfOrLud22qZIhmIrrVmL99ov0LbeB+TMPoe2LZKRC+S4esQ93dQ5hhT8MfgbdFl5ytydPW9X
ruqQi/hLgaPpcwwJ2C1sw0mr++IOZTfqcgEsibtoFWHdd5llm/YXnGE/DxiOrbRtkZJcYNDq+KcH
tTzlQgB1tB8vy/iP9g/0sp8NYAJtU6QlF2Dx6eTCv6/x4sLVpwLA3bRtkRbpWrJbAexRpK+YVNiH
H8alH+elnpD8YcuhyIYPhx7GIJtfdWPG0DZHUli/nVx47/YGjFgQWLpuR0ppyR4mO5nwxr3A6LnB
n2MDbXukhX1kZQF57l7gnndaTSHAZCcHiOEx4LHXQn6M1atbnloW0Gr+f8mZhvFzgOlhs1cmKr67
WCJYd3GiHL91EVTmcWHHXqJtlLSw0o46h0s/Ru688vCDg2lbJS2su5g2tdd9jvZLrqFtRmZhpR1l
/hriQOcVl0ce7q/sLhQmO7r8qv0R3VYXRR1XtNtTUHYfCMpY3CXbcAm7cJqtd/SJd2hbJi3+riJd
3jlTdtG2pfXxff9d4Df0Tj2hbCPwke07m2sVrg+yYuMQDwptsUKeYoayXZ8CsrP2oG1J62PdsIO4
+ONuMc/NbB2y60HbkNbH8tJjuHJZ59gnl9K2Tlr8spPgA8tGKZpm/q0NuG5RhzhnFd6S9TcpPB/W
0raklfHmLQ0YtSSe6lBTk0xiWUfgI6uDRijvk86U2ShFU0ybAoyfEd//Z4CyXQECD06Is7KoW/mc
QKE3p6UJMhKATJ4CTJ7ZhNfZTTfRtlFSAk9uEgghHmtF3jlT1gJAawiZSQ3fBBMwdWpTk5Afe4y2
kZLiX+YppwFYY7O6xXiKgqbAuC8dqbOIT7GoGzMfqhl30TaDBuFBZJEjBvLbb19k94rSY0FkpeJo
2XLkvHtz0xc9iJdp2ykFEUFkyTd9AKDryJHYabXZWRBZ6TgwfB3aWa5r5qpq2mZKS6Bu1xjPruek
al91X9p2KZZ9g9bhhE+aUx22Kroh29ikWBd6VHD0bEFajObZe+Um5Nmvom0Gbfyys9w58q6wDmMd
bcOUyc7+3+PUzy9p/sKNG2mbKimNCxbv7Bbqcre/azpSZ02KcH7Q/g897AUJXFmozO7iyHUpgPDP
alpUxwjHMXgf/m47PZFLH6Vtq7SwCYuZ4/NrD6Bo1YkJXTuKtrHSwqICZIyPBx/AgDWJqU7psAmL
mWLRLfW42toxwauHYRltg6WElXYZYvZN9Sj/KFHVKR02YTEzvDAJuHNWTsLXK7qsY6VdZiD/Nwl4
qCpx1SkdVtplAN/9bwDPPpLMOPd8Zbdlmeykp/7294HX70nqnueY7BgpcezGj5Az99bkbnqbttXS
wmQnNQevt6PtwuuTvOti2mZLS2STohbA7F20rVIQHq0dHVcmqzqlEy67Kd3yAZTpH6FtlmL47cqv
wNmFpO8rLKRtuaSEfWT7OYkKQNfqYu9M2oYpg5+FHTi5+qLkbyyhbbm0hMpusgMacXn6qn6lrd4T
MR38JOzBWfaWrAuryJkUjYR+ZO1a72ZxS0NMtA1TAlsG7MG56xW8GnGLCS3tnO5GR89NtA1TAF8M
3Y8+q09u0b3PQtETZUNLO75HYGsNbbOUwGrtfvxzXctUhwULaJsvKaGlnbDOX6GrrVAVp5xya3fz
XHJTHUo+6NTCu9fTNl9aQks707hvAaB2Ts+dKKVtWLbzdlkdRi5rqeqQn0/7ASQltLTrOqtvnnew
2w2C0jtTTrl1u3m++gAwZnbLx4B2KDvCXVh3sbBjILG5COEti2jbld2Qpx4A7n8rhZHH4cNpP4Ok
hL2ZXbwFW2ryeTZtLDV8D70CPPl4KgE9JtB+BmkJld1ge8VMsDAUKdMw7m3g5QdSSkPRAbPDZWdT
8bTNUQLHbrFCPft22mbImtC63Tg0Lmn6AW3DspZDw61osyhV1Y0ZQ/s5JCVUduZxHwa3bbQNy1a8
g1ejw/KUQ8js2EH7QSSlMQYKMAcmjVbcdFSxsIot4o/B36DLyv60zZAr0TFQgMVr4LbSNiy72a39
CSey6IDNEio7vR2cf9PLonm2hO3CLzjD9rc0pLRa2etnh8pOxzl7BLaVPTYjEf8p+R297GenI6mJ
ygw0FiCsu3hKj8ZN2oZlIf++xosLV5+alrReov0w0hLapAihNj2rGreqJoV9xCFc+jFbHrUpAoKI
E4yCOaAkzUdDD2GQjakuIUI/so0fVqd9HZtLkRzvj23A8IXt05Vcf2yg/URSEio7U7D5SrCYyS4p
3rgXGD03fZPdFe32FNGk6Oofk3WrBpGWJNZqIc8/BtzzahrDZ71D+5GkJVR2ms2BrfHFqbt5tiKI
cTrw6DOsrzNhQmVXHtya1a1fC6YUt1Ya7poNVE5Ka5ozlO36FKcDpUS9Kh2pt4oOlOO3LoLKPC69
ibaadSnC2LyftoFZw+HSj5E7rzz1hMJYSvuxpCVUdmsDG16zN5GVYhgAaq/7HO2tQ9OdbCtqyQoh
HSjGlFNuHfNk/xriQOflV6Q93Rplj4qHfWSD9TzeyFqyCfGr9kd0W5X6XPYoBiizbhcgVHa8vUca
U24N82Rdwi6cZustQco30X40aQmVXUUP2tZkGd+X7AVvl2TpXUUH3gl3BWjsedryDW27soGNV+xF
4Xq24HMLCJVdYyC2voZ1ySfV2lg3qAb9PjtNmsQffJD240lK6Ec2pOdYY2AB7ppheekxXLmss0Sp
V9N+PGkJyG7/TsDzrV947k2VbHyxGebf2oDrFnWQKnlFt2NDSjvDGkDTeFzTksRaEbMmENz0bhva
ZmQrgbpd1+qHCUgQYTFtw+SN6S6C8e9LqLqNG2k/oqQ01u1MBZNraFuTJZBHpgHGqVJWRMYq+zMb
0qTQd2vc3tWDtmEyxnf3LGDqZEnzeJT2Q0pLaAfKyMbNUtaBEpe60bOgmimt6jBK0QssRjo+1Yrf
WbfHqOy6RQocLV+GnHdvpm1GdhM+PbsysEV20jZMrhwYvg7tFg+TOpthyl62PVR20xuX3uFTd3xS
JjVXb0SnZQNpm5HthNbtFhlcvs1Gn8/nMVSl2UdbKey9YiPy1mRAdcsUXdiFRwWY1hMaF4Cu00oP
0DZMluzs/z1O/fwS2mZkP6Gy6wYAFXMAoIh9ZGPw4wA3zl5/fiaymj+f9sNKSpgrwM9nA4N6ac8G
3KxJEY1j8D78zZaZmXDPQdE9KGFhFXmuYCOm8RX8IjcLIRPF59cegGbVSZnJ7G3aTystYWEVb1ji
2NVDN3CWCiijbZjs+HjkUQxYnqmVYi6m/bjSEtZvZ1mDHoDNuKSm7E3ahsmNxTfX42prR9pmKISw
qABpH4lVTlSAOXqCsvfbZiw/hUcFCG3JDi5Q+EpXLefFcQR3zs+c6lBSQvuRJYUt/pQA5PFngYem
Z9Lj+mXazywtbPGn5vHd/yzwTEZVp3TY4k/NUj/2deC1xzKrumefpf3YkpLy4k9uox3CbC72SSU0
KY7d+BHUb9+akbzWotgfIl/hTYqQ+RNEqw6BJIaLN1l00MQ5uxvYnWBCcuWAALT9QOpclpSM/4ZM
V6tU6jnigX37aD+4JAQEESo7i0qV50eVqOz0HkKIAE/TuWQvNZcBHaulzsWqLipQj1dVuF069Vra
jywlsWRH8nY2biaYjosQQgxcM7lkLb9dCHBfSJ5NUQkhenUZIYQIJYQQQrZvp/3okhAQRJjjU5OL
P3m9sT7WPADYTVAmPw/4D07+9B+S5+MsBSaTcgAoE+OWDx9O+9klJUx2k4BaALN3hYbhEfEa84Jx
3GHVaou09uCuUdDTfgxp+GnAdpy5PgPBwzkA+cHlLQFggsJ77sPKwMn5OYQQr3ZKZOFoAGAL7Ohg
I8QEk7hn5gF9M2VqduI8CTj350zkVFTyDSGV+wkhRFtM+7GlJGbdrljtb0oU3RV+tcVlaZSdCQZC
CBECB1wWDuamc8lKNnQF+vyekawsKvVOQggh48vUS2g/t5TEkp1RpSrKJ4QQ4ohqT3mCsvNAbLfa
wAdOuiA0nUs2sroj8A9PhjKzVYp/VSqjuHHbbbSfXxJiNSnsWq+//qYh8RsJVeA5ABAaV3jnNcoL
Y7Hk2sMoqeYylJvgr0v7fNPEjR07aL8ASQmVndPcuIps/PB2iyCIGxosChzLlyBoNF3eLqvDyGWd
Mp/xWjEkyAZFL7AYJju+R2BrTRN3OOFfsyIf7sCxzRW0nyPNvHq7D2MWtstklmvPycnJyckRvLSf
PROErUsRWES2tkIVt/hyItDQ5+AG8gQTjwpTRDi8Pf6/e2k/XssgzzwB3PdyGhdMTABdv8UcAIf4
lV2NwbTfgpSErSdbtOQiALWLjd74y2c31uLy4QXK7EVlnImLuCi71wUgD70MPPFEhh2detb0BQCI
zhgTlekKECBUdl1n9c3zDna7QVAadzkULwLrw3CAmzfTfoD006CfC7yU8ZDVc4q6CfmA2z4VAF6i
/RakJWwKj7DDuMQGgDeNjHsDF7oTb4Gi3f6/e7NwAtSxW6xQz7494/nquUF5BPCJnmiK/sRGBhrj
LdhSk883NSuPD35nvREaDCGLfewO37Aabf5VmnpCyeIqF2frtQq/7qiFPfs2cwMPeMWtGihw6sX+
azegwwdDKOSsn54n5HOwGhsAoD8U3YMSLrtdps1uFGuaXAVK43SJG+5AB56C+GPIFnRZ2Z9G1pWY
Ng0AxJaMwhf2DBuTrVSrVSqVSqWOcgUIGRwzBQbFQpwDYtG7d+/e52TZ4Ngv5wEnOujknWclhBBi
S9TTMSsJDI6FlnZLjIBG6AbXpmnemXF1qje6vRwAO3illXbbhV9wuv1vdDL315gF5Y0zxiJEilpV
Lzfx/5ebEyFTV2PZZgh4oFgSFnd28O0pQK+dtHJfU7yGEFLQT9x74w3ab0MSYnmgqNT7A5u2SK8v
CxpVJsBBiDngb5dILlnBvznggr3Usi9QLyGEWFSiz1nv3rRfhyTE+shyBUFXAKE8rEi0bqoCxm0q
EL2IbVVGAA6FrQ9lH3EIl66kt1S6u+oGALpJYgfKUtqvQ1pCZTcupMtIjG83xz9YodOFOULpFejE
/lH5cQz66ASKFuwHAPQS/SsU3pINHe42kW8Dmy+II4OtJzbA+7rjGL6Cpuo04lqeFrGdVqPslkVo
aTenYuAj4gCFq9I8B4DL2qI0RQoB1NF+vESZcQ9wy1yqCyZOK5kwrUutcY34X31A63EFWLwGhsC2
0hzomoRMfRS4+7XMOjpFIswab+a8xCSuPnAT7XciLaExUKxlEaOsXlWikVDikB0xUIhxOvDoM9Qj
Ou03u4uEnrStkJSAIMJiF8PdI+wir+J81WPRMKEKqJyUekKp0tUAQK2up21HBggbkzX3CD/JtYZP
bd2tC6GaJZ+2ufj5eVDZgRXDZBey4pMYxlgGRYDUHCldidz3b6RtRiTVtA2QlnjVaAV6DcekdshK
tP9IdqrDVkU3ZCMdn5zufQAAt3Uqbcsywl9DHOi8/AraZrQ6QmW3X3CmMeVs6Lf7teQH5K+WY8Np
o7IXRAmVXakDXD4HAN6a/bQNywRuYSe62wppmxGLsa2nu9ietznYa5T6sghbAeyR9czF70v2grfJ
zDPfJ/55lLYd0hLmgaJv7KtsBQt7bry6BoXVp9E2o5FddkfxoB7itqLXVwxvyZZ5G7cH0TZMcj4d
VIPiz2SkuikF+kXjCl6kbUZGCPNACYm38wJtw6RmxZCDuGJNN9pmNDLbNMlX43vYIK4NMmwYbXsk
JVR2XWcP/rm2tra2tnbXWqX32y24/hiu/aRL6gmlDZN2GgDTDc/TNiQThPXbOTbJrH4tGbMmENz0
LlVHp0jc4pTwkvEAgGW0zZGW0NJueoU36PRO2y5pMd1FMP59WakOg8QY5BYNgC39aFsjMaGl3VSi
L/XPJdg3PuWU5dtdTB6ZBhimUXd0Cmd86RA9asxOw1qg2jlf2W3ZUH+7fG0wPCemp+wFUAigbrsM
/e1897wJTJ1M24xIwkbHVX9TZndxLH87IWTaVOq+J3LtLq4b+y9ghgyXfTA2Ol9ZprxN2xppCZXd
tJBZimsH0rZMIo6WL0POO7fQNiMafXljZ32pW9EjshGxi8saZywqtQPlwDXL0O4DGaoOs/oAANS5
AHrOom2NxISWdlO8kwNRTWrS6YsiI2qu+Rqdlsp6CEasbCt0PdkAobJzrCHBibEya+alib0l3yPv
k0tom5EAqbtiyJqwKTx2DS+2Kmq8a1qWnLzZJbhwavUFtM1IBEXPpAiXXbl9cXA79X47+fGj9lec
bVd4mIfsIGxMNmQRWQrBe6XGMeBX/G1Dlqju2WdpWyApYZ2UfRvXk5V1rbtFrB+4D5rPZdd5HYcF
C2hbICnhU3imVO2vB8pKi9PgBiGzwbFPbjiKAcu7pp6QxPi9i9fTtkNawkq7fpUeAqBrdbUMO/FT
Y/Gwo7h6lVxVNzgYagvfiCtS5NMLtJcJQku7yQ5odgIAqvqVXpVqyrIaHJujJyid15a2GfGw3Rmc
vbZZ7DHdoewId2FTeLSWLqK7rYaYUpadnHjpIeAOcw5tM+Lj8gDY2TU/GDl7eOvpLna6E1lPNvsg
TzwDTHxBxj3gnHUg4M23DgTsZQAAxdVywgmVXWLryWYdvgdeB555VMaqE4s40UD/AgF30zZJWkKb
FMI6/0ZT68lmHfVjXwdee0zOqsM3cbYVS9jMsXHfAkDtnJ47ldNdfKzsPajfuZe2GU1T9FZtba0b
+2tra2cXAQDGjKFtk6SI3sXf1MCLG2AvyfMK4nqyi1JNGIAconkeut6GtgtuoGpD86hVAEBUAIhK
yUvdhXsXa1TQlSe2nmx24Rn6b3T8SEvbjGYZFzTRNhsAlCm6RvxNCr66J5DQerJZxe8l/wG38h+0
zWgWU0WwD6FU1pXQdOGXXUXQobq59WSziV+E7Ti5+iLaZjRP9MyV1cpeP9svu6iFnJQwl+In7W6c
aT+XthktYmKr6C6OGgE0pyw76q4A35T8iXNtZ9E0oeW8RNsAafHLLi/i8H47bcNS5ouh+3HR6lNo
m9FCFP2JDcouYkHiGm/qKVN2Bai+/jD+sZKjlj+jKfyyc0ccJtnenlpyUx20H3aibUaLUWi/XQC/
7JQWauedO3y4YX472ma0AL+bp6LdnhpLux7hh53ZHXLo1QeAMbNzU06HHu/QNkBa/GOy3ojDmmwe
piBPPwDc91Y2q07p+GUXtWhuebIJyQfy0BPA46/QXaazxfjj2s6YQdsQSfEXCTsjj2dvaddQ8Rbw
4kTaZiTN2go3EGzMzVS2x51fdqayzrQtSRPHb7FAXXUHbTOSR9dvMQfAMQ0AsJS2OdLil92OHvry
PrRtSQeHR65Cm39lo7dgzxpxOFz0RWkVLVkzvLD3oW1LGth/7QZ0+GAIbTNawpyibkI+4LZPBYAa
KHrGoii7cSmmIhf+HLwFXVYMoG1Gi9Bzg/II4BO7UAe0ClcAZbBH+1+cuFqTekI0cJW/CQAQQ1ve
RNscaVGS7LZrf8bp9r/RNqOF6KfnCfkcrMYGAHiMtjnSopJ0WCyjcyn+U/I7etl6ZCq7dBPoZxTn
UiiUgCCytFM1Bl9d8TvOX9+DthkthrP6fD6fr1qcUfDgg7TtkRTpPrIZdvNcM/wQLvk4i5t/jiUA
gtOzq2mbIy1KqdstLTuOgUtPoG1GCmh3Cn0a9xTdjpVSdhl183x/bAOGL2yfodwkwV3ZBwCwqwdt
SzKAMup2M29twC2WrFYdNJsBAEsKAAAbN9K2R1KUIDsy9W5ggryW6UyeyYvfCtkbO5a2PZKigLod
mVwJPPJstrvh99LozWVcvn9lkEdpmyMt2d9v1zChCjAZJM5Feli/XTZRd0sVVObsVx1Q5fF4PB6l
rzYmku0f2SOlK5H7niJGMPO7AkA38fMzTNnLtme57GqHfYb2lmtpm5EObOJSICNtKaaTFWS37P66
ejNOWH4lbTPSwiCIfXai+hRd1mV53e7XKzYjf+2VtM1IE7sG5xTkDPmZthkZIZtLO7ewE91thbTN
SBP7NfmzeMe0gh09AGA+RtE2SEqyuANlq3Yvetp5Ke3PJGVbtgPwFhcvBBS7jHF4ENlsZNOQGvS2
nUbbjLRhrwQArkKcOfY2bXOkJWtl9+l1B1G8qhttM9JH/n4AwD7Rd+ti2uZIS7Y2KVYMOYgr1ihI
dRj5/M8AtlQKKaeUBWRpabfg1noMtXSgbUY6Mdl5gXfbNeJEHoXW7QJkZ2lnvrkeN36oKNUBjqn7
Fu2bJro/oaSEtjmSkpUt2UojUDFDxgsmMuKQxa4A5BEjYHhToapTVH01LtlXt/PdOxOYOpm2Geln
l7MGQLUXAPCssmfKZp3s6m6fB8xQ4HKrs8eL9R3RXXWBsmWXbR/Zo7p5yHlfgaqDUXD5fD7fLFF8
69fTtkdSsmye7IERa9F28XAp3wg1ND0BoFys22XxhN9EyK7Srka7Fp0+VqbqBlkBAG5xcGzHDtr2
SEpWzZPdW/I98j65ROJXQokbl5xb0ZNDtRMAMFzZ3cXZ1KTYJbhwSvWFtM2QiFLsmAQEmhRKrL2G
kEWy+1H7K862Kze6qlEPAFaxa0jRAbOzSXbOwX/hbza6S8BLib68JwAYs32+b0JkjezWX1sLzaqT
aJshHeEzFccoex2ebJHdqhuOoP8Kxawm3yzKbshmi+wsN9dhyJKOtM3IHIpeXzFb+u3eurEOpUtb
keqUTlbI7qU7fbhjQVvaZmSS1atpWyApWfCRJU88A0x8oVW08IJMZN3FdPE9+Brw9GOtRXX+ZYxf
om2HtMhedvV3vgu8eh9tMzLNYNoGSIvc63bHyt6F+p3WoLq7dtG2IIPIXHaHrvsQbS230TYjE5ir
akP2+venbY+kyFt23hIbOq64gbYZmWFa3uC3gsrrpdyxZ0Dmsvv9yi/R1aalbUZm4Gyb+07l+r2w
CwDwzju07ZEUOU9Y/EXYjpNX98n0K6HJ/sWTvVy58WzadkhFFkxY/Kn/dpy5vg9tMzLF2lrgA30F
mTRtBz8BM2bQtkdS5NuB8k3JnzjHfhZtMzKG1ugxc2WOvsA4d8mN3ynb4062svvymv24aPUptM3I
HMQ00h++GLWc7Wva5kiLXGVnG3EYl63Mo21GJrEEW+yznBXKbsjKtW73wbWHobW1LtU1Rhib5Xmz
poa2PZIiz9Lu3dt9uGF+O9pmZJSRIdtdMYC5AmSc1+4HbpsjS9MyhSIWeImPDD+y5Jn7gXvntjbV
fQMAawb7l1l8TNEhUFKXnbs0L6/Cm0aLyMOPA4+/KsP/D9JS9AGA/L/0L9I2JBOk+us6i7zFqCpK
n0EN414CXnyqtbjXNUIAoK/jBnEG2YMP0rZHUlL9lBkdPLxF7ip9muw5fosFqtl30H4t9Lj4AwBA
NW07pCVF2blLeYAzax1pMufwyFVoM6+M9lvJOPstwKIaAK4qsR9F0e3YZGTnBRd9MF8PAHysUy1h
/7Ub0GHJ1bRfSuax6wGLBQCExbRtyQSJ1u28xrzNwR2rVluktQPwy82L9Dgn/XnVBnRZ3QpVh5E+
H6p8Pp/PVy1OQd+4kbZJkpJgaWesDNkptdoEVGobF0pfJKRlDY892v/ixNUa2q+EFmGRFMcq+zOb
mOysFf1KgzuVVoMAGGxGjV9sbmtaqnY7hJ9xuu3vtN8ILSxh/3UfpW2OtCTq5unNg00IbHk4AHYt
7xLPaU3xSqhk3Dy/0/6OAnsP2i+EISUtd/OsAs8BgAC3GPa0siId38Wvrvgd56/vQfu9UGdLP9oW
ZILkZbcI/q+BBosAwMrr0mDHGsGDSz7rTvt10MctBpEdNoy2IZKSvOycKBA38uEGYK3RAfBWpWbG
0msOYaBN4eHJm6G2tra2ttZN24yMkHR3sTPQawIObsA+TrABsIc3Kvb4/+5NMNF5YxowbFF72i+D
GsW73F26eQEARBwWXEbbJGlJWnaN7of58MKthRUANOFrpycZoH3m3cDNb7eh/S7o0RNd4NFrAaB6
Dm1jMkHSsvMGO5g4wM2nYb4jmfYIMOH1VudyEoIFAEpEp3ZRdvMxirZRUpK07LjQnXiVsd3+v3sT
WHucTK4EHnm29bmcxEH8j/wck10YfPA760XcodgkpmQ33G0GGgc8Wi+ungAAwQYAeJu2OdLSEtl5
xa0a8MneHE3dbQugerOC9muQAaLq0FWctJjAZyKbSb5GpYF/cMKN1Edij1y/ALn/YqprbSQvu3LY
xQ0nSpO+OYLaq1ei/YcKn66SIGvnrMX+wd38qz4VFtK2R1KSd/PUG91eDoAdfJOlXQILe+4bshkn
LL+S9juQB/qd3L5Sz7SKgocAoIS2OdKSaGnX2F3HGTAVAEwwpZj3/y7fjPy1V9J+BXJBcO9cM3vc
pIUAgJdfpm2OpCQqO2ewJQGTUOkEquympsdit27dunVtUxe4+/+A7p+3ipHvRHCXdnWiD3o5aRuS
CRL0t9tUBYzbVCBO1LFVGQE4UvQ72ardi572NDSGFQIH2ATAxQEAnoWiJ8pSC6u4aUgNettOo/38
8qH44pm9xj+8s6j8TQAoVKZ3cUAQtObef3bdARR/ciLt1yAjJpdt2qmbPZ6ILijraZsjLZRkt1J3
FFcs60L76eWErtpe1aN4nN+tTOE+YNJ9ZAsB1G2P/ZFdcGs9hlo60H54GbMDioxwRzV2sfnmetz4
IVNdLNZ0AwAMH07bEEmR7iO7FcCemI53lUZAPzOH9qPLjV3OGgDVXgDABNrWSEvm63bkseeBSSbm
6BTB7PFifUd8MYoOmE3hI+u753ngeaa6KIyCy+fz+WZJ2qMlFzJd2tXdPg+YofBPSMvQ9ASAcrFu
Nwbv0LZHSjJc2h0tnYec95nqYjBInHXsngYA2LGDtj2SIl1pF8sD5eDwtWi7WNmNtJZy45JzK3py
qBbHZDfQNkdaMvqRrbnma3RaOoj2M8uTUuyYBASaFAonkx0ov5V8B+6TS2k/slwx6gHAMgUAsFrZ
62dnsLTbJbhwSvWFtJ9YrujLewJAqTgmO1GZrgABMie7/wq/4my7Iod80oIYKhs9xb8v0TZHWjLW
knUO+BXnrWeqi883g3Nyd5VcLC6gPVjR39iMyW79VX+h7/okg1S0KrZoXHcSr2HHZNqGZIIMyW7V
4Fr0X3cS7aeVM8aiHWYCYZw4Pbt/f9r2SEpm6naWm+swZElH2g8razaL4aF7iU0KhddGMtJdPHec
D6Xz2tJ+VnmTL+rNP0XlHdrmSEsmPrIv3+HD7QuY6ppmpGkdoFpbVU7bkEwg/RSe0598GnjwxVbR
+Z4SRd9onBrnIHHZpxnKdH3KmHex74GngaeZ6prHMZV0JbP8i43NnEnbHEmRvLQrtQCv3E/7MbMO
NpciNSxQv81UlzhLRH+7XopUXRDpO1DaLLyB9kPKnrWN8dkXewEANcqesii57NovVXjwonQgqIi/
vqPyx6ocoGxXAMk/sguY6hLA4vOZiMXj23wDzACAm5Qd9I9aDBRGCJPH98A5uqkAUKxW8pKeVKdn
MyKY1gPYJ0ahENK1ELmsyexcCkZ8iqruBACrODj2IBQdV5FWxCdGJKbii009nVP9S91V0zZHWmgE
o2DEQlNdMUhFeHsfAFB2O5aVdjJCcO108z3V6nrahmQAJjsZ0bMnAos/bVT2gihMdvJkrLI/s0x2
8uRR2gZIC5OdPFH0+oqsu5hBBSY7eTJsGG0LJIV9ZGWGj7YBGYHJTp4so22AtLCPrJyo3UXbggzB
XAHkwPidUM3qUTvOClQ+BACYr+y2LPvIygHOBh7QrZlVbDNwdwDAc0x2LYO5AiSON8/eFzvtlePQ
1zXrDgB4m7ZJ0sJKOzlg1/cFrCodgOI5AKDsEVnWpJAH7gIANq4HguvJKhwmOzmgsQM77WUAYC0D
ABQW0rZJUthHVg5MK0HxLBixf5p1ZxEAQOHz7djMMVlgn+wuNvXFliKgYDttYySE9urZjDCEzQCA
vq1jaIzJTjbUogbIR2BB8WfxGG2LpIQ1KeRAbXm3vLyCgoK8vG43ipHaFyygbZOksNJODujWjCvg
8oEa78bF3lUAsJ62SdLCZCcHNuvfDGxWiAstKjreE/vIygNvUXCz2AuALezJyATeyK3hyp45xko7
OcDbg5s2Mb7dBGUv9cxKOzkwaHa3Yg75qPFu9lQAgDLjtDfC3DzlgFm7aKcLNfngBpWPpG1MJmCl
nSzQ6SIOjFH2OjzMzVMOrHWjuA8AbClDwSoAUHZDlpV2skBQEe1qAOAHOsQVFjfQNklaWEtWFph9
q7Hrm29qu5pbxXKyTHbyIB+ApqjICPhXyVq9mrZJksI+srLBXlxVGtyZqOzuYiY72VAAvmtw5yXa
1kgLk50s2MwBXtUWAJvEA4NpWyQtzKldDqhDfgZVA21rJIQ5tcsKU3BswiI2ZfsruwuFyU4OWLQB
Z3ZUiIvxKHtdT/aRZWQStuYYgyJMdvJkxgzaFkgKk508mTmTtgWSwpoU8mQpbQOkhclOnii8Jcs+
svKkpoa2BZLCSjt5MoC5AjAyz020DZAWJjt5oujAO6xux6CCpKVd/V5gL+0nzE6exJO0TZCCvUA9
IOWYbCFQp+TAlIyWsbEf2EeWQQVJPVDq9/yJk9LyGd97MTZ2l9BSln5mMqj/Exe0h8R1u9wePdKX
WHeJPahY+pnIoIf4h31kGRRgsmNQgMmOQQEmOwYFmOwYFGCyY1CAyY5BAWknLDIYMWGlHYMCTHYM
CmS17Lz2KtomMFpEFsvOWzHIq5c0h1Ij7WdUKtkrO3seHLrUk2kqB6uEibtL8/IqvOlP11tRWqp1
y93wrJWdXSuYJc7CJGHaziJvMaqKUk8okiJYLKVF0ukuTYaTLIXjPBLnoHfAIFnigosQDw9zutM1
wEMI4QWZG56tpV2lt4yTNgcnp5EucXcpD3BmONKdcJWGAyDYpSru0mS4/GTn9SZylRkFWlVBpWTp
A8YWfmMTSj9fDwA8uJblETcfp7cYAIpgTy6xhDNIg+GA/GTnNeZtDu5YtdoibcwX6HWDs7g0xgqJ
0geMLWvFJpg+J14MbZrf02Yx5Xy4WppwMxmkbLgfySoBLcIAwBbY0cFGiAmmGNc5IBBCCA+XNOkT
h54QknzdLuH0xatbXAWLl48/Nxt0LU05oQdpueF+5CU7i8vS+LQm8VcXGh+/ERv04stJrmqbcPpE
8JAWyC7x9AkhxMV70v2ezAHZpaiLph+k5YYHkFcwCh3yQ0p5TAEAo73CBbhDP6c28KgBgH5JfkwS
Tr+yFF4AXi8nTfoAgApLcqknkA+PfQDgBd/ClJt9kNQMDyAv2YVSBZ4DAAFuqw68JewkDy8AcOgm
Tfo2ewUAVFXpLMmnnED6AFBZkZamclg+/vdSgzT2CIY/SHoMl6/sFkEQNzTORTpENp00mwHAi5a/
gCbTN9UAgFZX0fJSo2n7ASufnjGWsHx4bjMAOALH0p5BmgyXW0u2ESfEFRqQjxidUFO8TgCbuJa/
3ibT1wiCIAjghZbLrmn7Ya3RAfCm7ssQno/eCQD2FOxu7kHSYrhsSztnsIDgYv1sOqHUBW/VbKnS
l9p++zjBBsCecn9xRD4ma4UZVrdNsgdJj+GylV1jENV8sb4Sgc2o5WssLS/smktfWvvdWlgBQJNy
qRSZj6uiFHClsbALzyBNhstWdl4EGlMc4I7xkCkO1DebPoBUHP6bTp9P21yCqHzS7SARkUF6DJdt
3Y4L3clvYSIKTj9j+UiSgWxlxweLdy9SHQFUYvoZy0eSDOQsO6+4VZNq36ci089YPpJkIFvZQRMY
gXCnsxNKOelnLB8pMpCv7MoDzjtOlLL0KeYjRQbylZ0ebi8A2MFL8r8429PPWD5SZCA32TX2EnEG
TAUAU1rnNGR7+hnLR+IMUvRgSTcWwBLYFuAIuvKw9DOcj7QZyCsGinVTlRecvsA//bXKAsCUxikN
2Z5+xvKROgN5yY7RSpBb3Y4hU9yleXml3nSlxmTHSAS3tt9swTooXckx2bUutCqVqiX3mRwGnUVw
eoEqlUqVspcgk10rw+Rq0VxGIwdAw3FAmcuVettCAbKz0o025q5M3kuUosk836KBVR4A7CYAHM+n
7ociU9nZtSqVSqUq9QJucVPrjHmhU6sqbfEsmzRgLCgwepO7JTmTrXktCX0gzbMK6YvrJkVfZpq6
K+ERN11A3LmmxMOnOic0NcyAI8lbkjJZAJ9OcwVLS+808xAnJxMipBwxSKalHSDAP09O/Bt3NFDK
ADmJUJb8LUmZbNT4h6QSjd0iFXqbhatKV+VAtk7tXIhPYb63iQsl9NyVimRMFgJzZUqlGO6IS4zp
5DyvKbCk6TMrW9kxwjGmIYZTEvCxap+8pibphGLDZJcdVGW6YcHFOpifLvdi2dbtorEXqFR5RgD2
IpUY58pYUFAUqG1YtVWoEI9XaovytMFaSKW2oKgi0Az2VhSoiowA4K3SVsFaoCoKayGHHa0sUKns
QGWRSmUUzxnhLs3LqwS8FXkqrTdwl7s0L6/UHZlDqElBQk2Ob423tLS0oED8ztkrAFiNwKCCghjv
oKVUagvytPYmHyuazUkHdotHOptJaQXQBDZ50UxXoCll5gghxKPReAjRAQIhJg4w6wG4iIMXPMSj
g+AhhBCi0YitYoAQYuNtxCVAQ4hNAEwGXuCC7WVCoo66/C1oDgZCHDpAb9LodYDZodEbONE+D2AS
Gz82EpZDiElBQk1uyhreRAjR6Ahx6Tn/T+RvMEe8Az8ui16jI8SmCbQ14+Jvybp4nYe4AHO8x4qE
07kI0ftbsKm3ZLNJdkTn70wQDIQQohFfPAeBEOICeAsx6QnhxMOC+NMaYCGE6MG7XIS44CCEeAAD
IYQDZxZVE/Z6w476taQRI21p4E+M8+foElPjHYTYAI6E59BoUpAIk+NZY4aLEOLQEeLxCOGyi3gH
fhwmwExMehOaC/gnys7DCWJaXLzHikTPc3qDJ5CIomUXVSg7/DKAixBi8Uef04n64vyRBA3+ww7x
ZfJwiDseQohO/NU1/rftj9oWVkCEHw2XnT8nm/+H4WAhhHj87pBmwBSRAxcZ3DDc5PjWGETRm/zp
+l+HI/odhL4tj9lCPICH2HQAZyDEZQBgiNCQKDu9mJiD08d7rCZJXXZyblIEW1ODvOJfjcZpEgCr
hgdg9AcyDfZGiLtWf6AYDe9epAPcqAGgAWo4wIo88dKQuHV8zAgoMY/mB//kA0C+1x24GIDe6LUZ
InOIqH6Fmxzfmn4w7jMBhrDHQ4x3EMQJjdulx2ZwHAQhzztbB/Amb5Uuth/6YjFSlsbT1GNJiZyb
FJzGT/DVm2B3A+YKAHDHnrXpDrxGHmL13BnYhROCx+PxeDyEcOkwTwxhGKAY7uZyCDO5iWt1GlQW
xOswCX0HQRZBMJsAm9h7ne9vh3Jxegjd3iZapBGPJQ1yll00Ag8TvPYyIF6UJnfwjBjwUwczAC8E
ADWShHYKwKOmmRzCzzV1rUMHtzbO7MCQd9CIXRymt4vFKRc8zsVMwi3pi0iE7JIdjKjyLtZx4k7s
r2PgPysHHsBsjbsCMHIWAPn+mXfSwIFvPocQk5u81mLjYY0TkTPsHYh4nRA4wOtEQhEP8yFJkKsk
yDLZ6TlMtVQAAB8MARwOH5hM7EYxAM7Bby7SFng48ZbF4rk0RDOMwo3yZnIIN7mJa52A4DLAGbuL
uPEdBLGDEwu7xMbPNBCnIAJuSsVelskOelRtFt0CeMTUTgWc4qt0wggApRaHw2YAAHA8/E5KpQnP
M/YCSOyT5OT0zeUQZnIT1y5yAzDpI+KBB61ofAfBG8Q6nQ3l/gOis1jckQ0NRCdBbwpBclNCtrLz
hnwIQkYCp8Drr9WY4C0F4F2MzaH3GXhxFrHTbeABlNpr3F6v33vDBG+RHXAWhTQDY48y+o/yMAOo
8LdLasJPe8PusLtnc7FzaCTc5CasMQOAFkVhmW4KNI8a30EwczFMhB2C+H/N7ydmiPdyTUBBldtr
LzI291hSkWoPjFTYEBw/8CDEp00X3NQDvF7PCwBvIyToDObSwESIixN3A78oZxJvBuC/khP/aML9
2cKPmgFO4Mw6QPAQIogd2Lbg2IVOzEFwEGLx9zqH5oCoMYNwk+NaY4CNECJo/NLxEEKIABgER+Q7
EHFA7AIEHP5+7YDsohbW8I9S+AVpFlOO9VhNodjuYpsOADidhxCXWHvW+d+0qVElFoHjdS69ziaO
REFvCVzC8YLfL9Sj0WlEvz2xU1fgOMFGCHEIAHQulw6ALtilGnXUzENwEL3eRohND0BnIyYe4E3E
JsDfGWsSOHAB8xpzCDMphslNWGMANDrBQPyZakyEEJcGmuD6JBGenya/vnV+xTQvO2ITOE5wkCYe
qwkUK7v4aJILiWAQL/fY9KkuhyQjmnsHCcguJZQ9ShELt3NNMpcbqzwAAE4oHkfb9My9A2+MLXkh
2yZFHEx6LomrvZXB2vri8iTukzfNvoNAT7Qb6XLLTDfZVNpVbBa8VUnO8nRWGgDAW+WSeol32bwD
u9kLo8sEt9kKa4WRUhdJ02RR6B1vHvwebIljrARXzMHtNBmSuk+utOQdhKGtSMOSU9rSVKdUZNFH
ljOAT/aNm2y6fLvdXe5Rhupa9A7kSBaVdow0oLWntsoLUFWRWnkLgMmuteEGUgzz760B8rkUzWCy
Y1Agi+p2DOXAZMegAJMdgwJMdgwKMNkxKMBkx6AAkx2DAkx2DAow2TEo8P+/fHDYTfO3mwAAACV0
RVh0ZGF0ZTpjcmVhdGUAMjAxOS0wMy0yMVQxMTo1MzowMyswMTowMF69yLoAAAAldEVYdGRhdGU6
bW9kaWZ5ADIwMTktMDMtMjFUMTE6NTM6MDMrMDE6MDAv4HAGAAAAOXRFWHRTb2Z0d2FyZQBtYXRw
bG90bGliIHZlcnNpb24gMi4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8A5k+bAAAAAElFTkSu
QmCC" />
</svg>
......@@ -409,6 +409,22 @@ Star formation: Schaye+2008 modified for EAGLE
does *not* enter the model at all). The values used to produce this
figure are the ones assumed in the reference EAGLE model.
.. figure:: EAGLE_SF_EOS.svg
:width: 400px
:align: center
:figclass: align-center
:alt: Equation-of-state assumed for the star-forming gas
The equation-of-state assumed for the star-forming gas in the EAGLE
model (black line). The function is described by the three parameters
indicated on the figure. These are the slope of the relation, the
position of the normalisation point on the density axis and the
temperature expected at this density. Note that this is a normalisation
and *not* a threshold. Gas at densities lower than the normalisation
point will also be put on this equation of state when computing its
star formation rate. The values used to produce this figure are the
ones assumed in the reference EAGLE model.
.. code:: YAML
# EAGLE star formation parameters
......
import matplotlib
matplotlib.use("Agg")
from pylab import *
from scipy import stats
# Plot parameters
params = {
"axes.labelsize": 10,
"axes.titlesize": 10,
"font.size": 9,
"legend.fontsize": 9,
"xtick.labelsize": 10,
"ytick.labelsize": 10,
"text.usetex": True,
"figure.figsize": (3.15, 3.15),
"figure.subplot.left": 0.15,
"figure.subplot.right": 0.99,
"figure.subplot.bottom": 0.13,
"figure.subplot.top": 0.99,
"figure.subplot.wspace": 0.15,
"figure.subplot.hspace": 0.12,
"lines.markersize": 6,
"lines.linewidth": 2.0,
"text.latex.unicode": True,
}
rcParams.update(params)
rc("font", **{"family": "sans-serif", "sans-serif": ["Times"]})
# Equations of state
eos_SF_rho = np.logspace(-10, 5, 1000)
eos_SF_T = (eos_SF_rho / 10**(-1))**(1./3.) * 8000.
# Plot the phase space diagram
figure()
subplot(111, xscale="log", yscale="log")
plot(eos_SF_rho, eos_SF_T, 'k-', lw=1.)
plot([1e-10, 1e-1], [8000, 8000], 'k:', lw=0.6)
plot([1e-1, 1e-1], [20, 8000], 'k:', lw=0.6)
plot([1e-1, 1e1], [20000., 20000.*10.**(2./3.)], 'k--', lw=0.6)
text(1e-1, 200000, "$n_{\\rm H}~\\widehat{}~{\\tt EOS\\_gamma\\_effective}$", va="top", rotation=43, fontsize=7)
text(0.95e-1, 25, "${\\tt EOS\\_density\\_norm\\_H\\_p\\_cm3}$", rotation=90, va="bottom", ha="right", fontsize=7)
text(5e-8, 8400, "${\\tt EOS\\_temperature\\_norm\\_K}$", va="bottom", fontsize=7)
scatter([1e-1], [8000], s=4, color='k')
xlabel("${\\rm Hydrogen~number~density}~n_{\\rm H}~[{\\rm cm^{-3}}]$", labelpad=0)
ylabel("${\\rm Temperature}~T~[{\\rm K}]$", labelpad=2)
xlim(3e-8, 3e3)
ylim(20., 2e5)
savefig("EAGLE_SF_EOS.png", dpi=200)
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment