Skip to content
Snippets Groups Projects
Commit 451dfabc authored by Matthieu Schaller's avatar Matthieu Schaller
Browse files

Make the anarchy SPH latex document compile.

parent e1e77b67
No related branches found
No related tags found
No related merge requests found
...@@ -108,7 +108,7 @@ their time-integration. The following quantities are calculated: ...@@ -108,7 +108,7 @@ their time-integration. The following quantities are calculated:
\mu_{ij} (b_i + b_j) (\nabla_i W_i + \nabla_j W_j)/ (\rho_i + \rho_j)$ \mu_{ij} (b_i + b_j) (\nabla_i W_i + \nabla_j W_j)/ (\rho_i + \rho_j)$
\item $\dot{u}_{ij, {\rm hydro}} = \sum_j m_j u_i u_j (\gamma - 1)^2 \item $\dot{u}_{ij, {\rm hydro}} = \sum_j m_j u_i u_j (\gamma - 1)^2
\frac{f_{ij}}{\bar{P}_i} \nabla_i W_i$ \frac{f_{ij}}{\bar{P}_i} \nabla_i W_i$
\item $\dot{u}_{ij, {\rm visc}} = \frac{1}{2} \a_{\rm visc} (\mathbf{v}_{ij} \cdot \tilde{\mathbf{x}}_{ij} + r^2a^2 H)$ \item $\dot{u}_{ij, {\rm visc}} = \frac{1}{2} a_{\rm visc} (\mathbf{v}_{ij} \cdot \tilde{\mathbf{x}}_{ij} + r^2a^2 H)$
\item $v_{{\rm diff}, i} = {\rm max}(0, c_i + c_j + \mathbf{v}_{ij} \cdot \tilde{\mathbf{x}}_{ij} + r^2a^2 H)$ \item $v_{{\rm diff}, i} = {\rm max}(0, c_i + c_j + \mathbf{v}_{ij} \cdot \tilde{\mathbf{x}}_{ij} + r^2a^2 H)$
\item $\dot{u}_{ij, {\rm diff}} = \frac{1}{2}(\tilde{\alpha}_i + \tilde{\alpha}_j) a^{(3\gamma - 5)/2)} \item $\dot{u}_{ij, {\rm diff}} = \frac{1}{2}(\tilde{\alpha}_i + \tilde{\alpha}_j) a^{(3\gamma - 5)/2)}
v_{{\rm diff}, i} (u_i - u_j) (\nabla_i W_i + \nabla_j W_j)/ (\rho_i + \rho_j) $ v_{{\rm diff}, i} (u_i - u_j) (\nabla_i W_i + \nabla_j W_j)/ (\rho_i + \rho_j) $
...@@ -118,6 +118,6 @@ where: ...@@ -118,6 +118,6 @@ where:
\begin{itemize} \begin{itemize}
\item $f_{ij}$ are the variable smoothing length correction factors \item $f_{ij}$ are the variable smoothing length correction factors
\item $b_i$ is the Balsara switch for particle $i$ \item $b_i$ is the Balsara switch for particle $i$
\item $\mu_{ij} = a^{(3\gamma - 5)/2) {\rm min}(\mathbf{v}_{ij} \cdot \tilde{\mathbf{x}}_{ij} + r^2a^2 H, 0)$ \item $\mu_{ij} = a^{(3\gamma - 5)/2} {\rm min}(\mathbf{v}_{ij} \cdot \tilde{\mathbf{x}}_{ij} + r^2a^2 H, 0)$
\end{itemize} \end{itemize}
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment