Commit 3fc24757 authored by Matthieu Schaller's avatar Matthieu Schaller
Browse files

Merge branch 'StefanCooling' of gitlab.cosma.dur.ac.uk:swift/swiftsim into StefanCooling

parents 0cf77e8d 395bf297
/*******************************************************************************
* This file is part of SWIFT.
* Copyright (c) 2016 Matthieu Schaller (matthieu.schaller@durham.ac.uk)
* Richard Bower (r.g.bower@durham.ac.uk)
* Stefan Arridge (stefan.arridge@durham.ac.uk)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
******************************************************************************/
#ifndef SWIFT_COOLING_CONST_DU
#define SWIFT_COOLING_CONST_DU
/**
* @file src/cooling/const/cooling.h
* @brief Routines related to the "constant cooling" cooling function.
*
* This is the simplest possible cooling function. A constant cooling rate with
* a minimal energy floor is applied.
*/
/* Some standard headers. */
#include <math.h>
/* Local includes. */
#include "const.h"
#include "error.h"
#include "hydro.h"
#include "parser.h"
#include "part.h"
#include "physical_constants.h"
#include "units.h"
/**
* @brief Properties of the cooling function.
*/
struct cooling_data {
/*! Cooling rate in internal units. du_dt = -cooling_rate */
float cooling_rate;
/*! Minimally allowed internal energy of the particles */
float min_energy;
/*! Constant multiplication factor for time-step criterion */
float cooling_tstep_mult;
};
/**
* @brief Apply the cooling function to a particle.
*
* @param phys_const The physical constants in internal units.
* @param us The internal system of units.
* @param cooling The #cooling_data used in the run.
* @param p Pointer to the particle data.
* @param dt The time-step of this particle.
*/
__attribute__((always_inline)) INLINE static void cooling_cool_part(
const struct phys_const* const phys_const, const struct UnitSystem* us,
const struct cooling_data* cooling, struct part* p, float dt) {
/* Get current internal energy (dt=0) */
const float u_old = hydro_get_internal_energy(p, 0.f);
/* Get cooling function properties */
const float du_dt = -cooling->cooling_rate;
const float u_floor = cooling->min_energy;
/* Constant cooling with a minimal floor */
float u_new;
if (u_old - du_dt * dt > u_floor) {
u_new = u_old + du_dt * dt;
} else {
u_new = u_floor;
}
/* Update the internal energy */
hydro_set_internal_energy(p, u_new);
}
/**
* @brief Computes the cooling time-step.
*
* @param cooling The #cooling_data used in the run.
* @param phys_const The physical constants in internal units.
* @param p Pointer to the particle data.
*/
__attribute__((always_inline)) INLINE static double cooling_timestep(
const struct cooling_data* cooling,
const struct phys_const* const phys_const, const struct part* const p) {
const float cooling_rate = cooling->cooling_rate;
const float internal_energy =
hydro_get_internal_energy(p, 0); // dt = 0 because using current entropy
return cooling->cooling_tstep_mult * internal_energy / cooling_rate;
}
/**
* @brief Initialises the cooling properties.
*
* @param parameter_file The parsed parameter file.
* @param us The current internal system of units.
* @param phys_const The physical constants in internal units.
* @param cooling The cooling properties to initialize
*/
INLINE void cooling_init(const struct swift_params* parameter_file,
const struct UnitSystem* us,
const struct phys_const* phys_const,
struct cooling_data* cooling) {
cooling->cooling_rate = parser_get_param_double(parameter_file, "Cooling:cooling_rate");
cooling->min_energy =
parser_get_param_double(parameter_file, "Cooling:min_energy");
cooling->cooling_tstep_mult =
parser_get_param_double(parameter_file, "Cooling:cooling_tstep_mult");
}
/**
* @brief Prints the properties of the cooling model to stdout.
*
* @param cooling The properties of the cooling function.
*/
INLINE void cooling_print(const struct cooling_data* cooling) {
message("Cooling function is 'Constant cooling' with rate %f and floor %f",
cooling->cooling_rate, cooling->min_energy);
}
#endif /* SWIFT_CONST_COOLING_H */
/*******************************************************************************
* This file is part of SWIFT.
* Copyright (c) 2016 Tom Theuns (tom.theuns@durham.ac.uk)
* Matthieu Schaller (matthieu.schaller@durham.ac.uk)
* Richard Bower (r.g.bower@durham.ac.uk)
* Stefan Arridge (stefan.arridge@durham.ac.uk)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
******************************************************************************/
/* Config parameters. */
#include "../config.h"
/* This object's header. */
#include "adiabatic_index.h"
#include "cooling.h"
#include "hydro.h"
/**
* @brief Initialises the cooling properties in the internal system
* of units.
*
* @param parameter_file The parsed parameter file
* @param us The current internal system of units
* @param cooling The cooling properties to initialize
*/
void cooling_init(const struct swift_params* parameter_file,
struct UnitSystem* us,
const struct phys_const* const phys_const,
struct cooling_data* cooling) {
cooling->lambda = parser_get_param_double(parameter_file, "Cooling:Lambda");
cooling->min_temperature = parser_get_param_double(parameter_file, "Cooling:minimum_temperature");
cooling->mean_molecular_weight = parser_get_param_double(parameter_file, "Cooling:mean_molecular_weight");
cooling->hydrogen_mass_abundance = parser_get_param_double(parameter_file, "Cooling:hydrogen_mass_abundance");
cooling->cooling_tstep_mult = parser_get_param_double(parameter_file, "Cooling:cooling_tstep_mult");
/*convert minimum temperature into minimum internal energy*/
float u_floor =
phys_const->const_boltzmann_k * cooling->min_temperature /
(hydro_gamma_minus_one * cooling->mean_molecular_weight * phys_const->const_proton_mass);
float u_floor_cgs =
u_floor * units_cgs_conversion_factor(us, UNIT_CONV_ENERGY_PER_UNIT_MASS);
cooling->min_internal_energy = u_floor;
cooling->min_internal_energy_cgs = u_floor_cgs;
}
/**
* @brief Prints the properties of the cooling model to stdout.
*
* @param cooling The cooling properties.
*/
void cooling_print(const struct cooling_data* cooling) {
message(
"Cooling properties are (lambda, min_temperature, "
"hydrogen_mass_abundance, mean_molecular_weight, tstep multiplier) %g %g "
"%g %g %g",
cooling->lambda,
cooling->min_temperature,
cooling->hydrogen_mass_abundance,
cooling->mean_molecular_weight,
cooling->cooling_tstep_mult);
}
void update_entropy(const struct phys_const* const phys_const,
const struct UnitSystem* us,
const struct cooling_data* cooling, struct part* p,
float dt) {
/*updates the entropy of a particle after integrating the cooling equation*/
float u_old;
float u_new;
float new_entropy;
// float old_entropy = p->entropy;
float rho = p->rho;
// u_old = old_entropy/(GAMMA_MINUS1) * pow(rho,GAMMA_MINUS1);
u_old =
hydro_get_internal_energy(p, 0); // dt = 0 because using current entropy
u_new = calculate_new_thermal_energy(u_old, rho, dt, cooling, phys_const, us);
new_entropy = u_new * pow_minus_gamma_minus_one(rho) * hydro_gamma_minus_one;
p->entropy = new_entropy;
}
/*This function integrates the cooling equation, given the initial
thermal energy, density and the timestep dt. Returns the final internal
energy*/
float calculate_new_thermal_energy(float u_old, float rho, float dt,
const struct cooling_data* cooling,
const struct phys_const* const phys_const,
const struct UnitSystem* us) {
#ifdef CONST_COOLING
/*du/dt = -lambda, independent of density*/
float du_dt = -cooling->const_cooling.lambda;
float u_floor = cooling->const_cooling.min_energy;
float u_new;
if (u_old - du_dt * dt > u_floor) {
u_new = u_old + du_dt * dt;
} else {
u_new = u_floor;
}
#endif /*CONST_COOLING*/
#ifdef CREASEY_COOLING
/* rho*du/dt = -lambda*n_H^2 */
float u_new;
float X_H = cooling->hydrogen_mass_abundance;
float lambda_cgs = cooling->lambda; // this is always in cgs
float u_floor_cgs = cooling->min_internal_energy_cgs;
/*convert from internal code units to cgs*/
float dt_cgs = dt * units_cgs_conversion_factor(us, UNIT_CONV_TIME);
float rho_cgs = rho * units_cgs_conversion_factor(us, UNIT_CONV_DENSITY);
float m_p_cgs = phys_const->const_proton_mass *
units_cgs_conversion_factor(us, UNIT_CONV_MASS);
float n_H_cgs = X_H * rho_cgs / m_p_cgs;
float u_old_cgs =
u_old * units_cgs_conversion_factor(us, UNIT_CONV_ENERGY_PER_UNIT_MASS);
float du_dt_cgs = -lambda_cgs * n_H_cgs * n_H_cgs / rho_cgs;
float u_new_cgs;
if (u_old_cgs + du_dt_cgs * dt_cgs > u_floor_cgs) {
u_new_cgs = u_old_cgs + du_dt_cgs * dt_cgs;
} else {
u_new_cgs = u_floor_cgs;
}
/*convert back to internal code units when returning new internal energy*/
u_new = u_new_cgs /
units_cgs_conversion_factor(us, UNIT_CONV_ENERGY_PER_UNIT_MASS);
#endif /*CREASEY_COOLING*/
return u_new;
}
/*******************************************************************************
* This file is part of SWIFT.
* Copyright (c) 2016 Tom Theuns (tom.theuns@durham.ac.uk)
* Matthieu Schaller (matthieu.schaller@durham.ac.uk)
* Richard Bower (r.g.bower@durham.ac.uk)
* Stefan Arridge (stefan.arridge@durham.ac.uk)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
******************************************************************************/
#ifndef SWIFT_COOLING_CONST_LAMBDA
#define SWIFT_COOLING_CONST_LAMBDA
/* Some standard headers. */
#include <math.h>
/* Local includes. */
#include "const.h"
#include "error.h"
#include "hydro.h"
#include "parser.h"
#include "part.h"
#include "physical_constants.h"
#include "units.h"
/* Cooling Properties */
struct cooling_data {
/*! Cooling rate in cgs units. Defined by 'rho * du/dt = -lambda * n_H^2'*/
float lambda;
/*! Minimum temperature (in Kelvin) for all gas particles*/
float min_temperature;
/*! Fraction of gas mass that is Hydrogen. Used to calculate n_H*/
float hydrogen_mass_abundance;
/* 'mu', used to convert min_temperature to min_internal energy*/
float mean_molecular_weight;
/*! Minimally allowed internal energy of the particles */
float min_energy;
float min_energy_cgs;
/*! Constant multiplication factor for time-step criterion */
float cooling_tstep_mult;
};
/**
* @brief Calculates du/dt in code units for a particle.
*
* @param phys_const The physical constants in internal units.
* @param us The internal system of units.
* @param cooling The #cooling_data used in the run.
* @param p Pointer to the particle data..
*/
__attribute__((always_inline)) INLINE static float cooling_rate(
const struct phys_const* const phys_const, const struct UnitSystem* us,
const struct cooling_data* cooling, const struct part* p) {
/* Get particle properties */
/* Density */
const float rho = p->rho;
/* Get cooling function properties */
const float X_H = cooling->hydrogen_mass_abundance;
/* lambda should always be set in cgs units */
const float lambda_cgs = cooling->lambda;
/*convert from internal code units to cgs*/
const float rho_cgs = rho * units_cgs_conversion_factor(us, UNIT_CONV_DENSITY);
const float m_p_cgs = phys_const->const_proton_mass *
units_cgs_conversion_factor(us, UNIT_CONV_MASS);
const float n_H_cgs = X_H * rho_cgs / m_p_cgs;
/* Calculate du_dt */
const float du_dt_cgs = -lambda_cgs * n_H_cgs * n_H_cgs / rho_cgs;
/* Convert du/dt back to internal code units */
const float du_dt = du_dt_cgs * units_cgs_conversion_factor(us, UNIT_CONV_TIME)/
units_cgs_conversion_factor(us, UNIT_CONV_ENERGY_PER_UNIT_MASS);
return du_dt;
}
/**
* @brief Apply the cooling function to a particle.
*
* @param phys_const The physical constants in internal units.
* @param us The internal system of units.
* @param cooling The #cooling_data used in the run.
* @param p Pointer to the particle data.
* @param dt The time-step of this particle.
*/
__attribute__((always_inline)) INLINE static void cooling_cool_part(
const struct phys_const* const phys_const, const struct UnitSystem* us,
const struct cooling_data* cooling, struct part* p, float dt) {
/* Get current internal energy (dt=0) */
const float u_old = hydro_get_internal_energy(p, 0.f);
/* Internal energy floor */
const float u_floor = cooling->min_energy;
/* Calculate du_dt */
const float du_dt = cooling_rate(phys_const,us,cooling,p);
/* Intergrate cooling equation, but enforce energy floor */
float u_new;
if (u_old + du_dt * dt > u_floor) {
u_new = u_old + du_dt * dt;
} else {
u_new = u_floor;
}
/* Update the internal energy */
hydro_set_internal_energy(p, u_new);
//const float u_new_test = hydro_get_internal_energy(p, 0.f);
/* if (-(u_new_test - u_old)/u_old > 1.0e-6){ */
/* printf("Particle has successfully cooled: u_old = %g , du_dt = %g , dt = %g , du_dt*dt = %g, u_old + du_dt*dt = %g, u_new = %g\n",u_old,du_dt,dt,du_dt*dt,u_new,u_new_test); */
/* exit(-1); */
/* } */
}
/**
* @brief Computes the time-step due to cooling
*
* @param cooling The #cooling_data used in the run.
* @param phys_const The physical constants in internal units.
* @param us The internal system of units.
* @param Pointer to the particle data.
*/
__attribute__((always_inline)) INLINE static float cooling_timestep(
const struct cooling_data* cooling, const struct phys_const* const phys_const,
const struct UnitSystem* us, const struct part* const p) {
/* Get du_dt */
const float du_dt = cooling_rate(phys_const,us,cooling,p);
/* Get current internal energy (dt=0) */
const float u = hydro_get_internal_energy(p, 0.f);
return u / du_dt;
}
/**
* @brief Initialises the cooling properties.
*
* @param parameter_file The parsed parameter file.
* @param us The current internal system of units.
* @param phys_const The physical constants in internal units.
* @param cooling The cooling properties to initialize
*/
INLINE void cooling_init(const struct swift_params* parameter_file,
const struct UnitSystem* us,
const struct phys_const* phys_const,
struct cooling_data* cooling) {
cooling->lambda = parser_get_param_double(parameter_file, "Cooling:lambda");
cooling->min_temperature = parser_get_param_double(parameter_file, "Cooling:minimum_temperature");
cooling->hydrogen_mass_abundance = parser_get_param_double(parameter_file, "Cooling:hydrogen_mass_abundance");
cooling->mean_molecular_weight = parser_get_param_double(parameter_file, "Cooling:mean_molecular_weight");
cooling->cooling_tstep_mult = parser_get_param_double(parameter_file, "Cooling:cooling_tstep_mult");
/*convert minimum temperature into minimum internal energy*/
const float u_floor =
phys_const->const_boltzmann_k * cooling->min_temperature /
(hydro_gamma_minus_one * cooling->mean_molecular_weight * phys_const->const_proton_mass);
const float u_floor_cgs =
u_floor * units_cgs_conversion_factor(us, UNIT_CONV_ENERGY_PER_UNIT_MASS);
cooling->min_energy = u_floor;
cooling->min_energy_cgs = u_floor_cgs;
}
/**
* @brief Prints the properties of the cooling model to stdout.
*
* @param cooling The properties of the cooling function.
*/
INLINE void cooling_print(const struct cooling_data* cooling) {
message("Cooling function is 'Constant lambda' with (lambda,min_temperature,hydrogen_mass_abundance,mean_molecular_weight) = (%g,%g,%g,%g)",
cooling->lambda, cooling->min_temperature,cooling->hydrogen_mass_abundance,cooling->mean_molecular_weight);
}
#endif /* SWIFT_COOLING_CONST_LAMBDA */
Supports Markdown
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment