Skip to content
GitLab
Menu
Projects
Groups
Snippets
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Menu
Open sidebar
SWIFT
SWIFTsim
Commits
32298b94
Commit
32298b94
authored
Nov 14, 2016
by
Peter W. Draper
Browse files
Merge branch 'master' into autotools-update
parents
27174568
907b0ce7
Changes
333
Hide whitespace changes
Inline
Side-by-side
.gitignore
View file @
32298b94
...
...
@@ -22,8 +22,6 @@ doc/Doxyfile
examples/swift
examples/swift_mpi
examples/swift_fixdt
examples/swift_fixdt_mpi
examples/*.xmf
examples/used_parameters.yml
examples/energy.txt
...
...
@@ -80,9 +78,12 @@ tests/testRiemannHLLC
tests/testMatrixInversion
theory/latex/swift.pdf
theory/kernel/kernels.pdf
theory/kernel/kernel_derivatives.pdf
theory/kernel/kernel_definitions.pdf
theory/SPH/Kernels/kernels.pdf
theory/SPH/Kernels/kernel_derivatives.pdf
theory/SPH/Kernels/kernel_definitions.pdf
theory/SPH/Flavours/sph_flavours.pdf
theory/SPH/EoS/eos.pdf
theory/SPH/*.pdf
theory/paper_pasc/pasc_paper.pdf
m4/libtool.m4
...
...
INSTALL.swift
View file @
32298b94
...
...
@@ -83,39 +83,65 @@ SWIFT depends on a number of third party libraries that should be available
before
you
can
build
it
.
HDF5
:
a
HDF5
library
(
v
.
1.8
.
x
or
higher
)
is
required
to
read
and
write
particle
data
.
One
of
the
commands
"h5cc"
or
"h5pcc"
should
be
available
.
If
"h5pcc"
is
located
them
a
parallel
HDF5
built
for
the
version
of
MPI
located
should
be
provided
.
If
the
command
is
not
available
then
it
can
be
located
using
the
"--with-hfd5"
configure
option
.
The
value
should
be
the
full
path
to
the
"h5cc"
or
"h5pcc"
commands
.
-
HDF5
:
a
HDF5
library
(
v
.
1.8
.
x
or
higher
)
is
required
to
read
and
write
particle
data
.
One
of
the
commands
"h5cc"
or
"h5pcc"
should
be
available
.
If
"h5pcc"
is
located
them
a
parallel
HDF5
built
for
the
version
of
MPI
located
should
be
provided
.
If
the
command
is
not
available
then
it
can
be
located
using
the
"--with-hfd5"
configure
option
.
The
value
should
be
the
full
path
to
the
"h5cc"
or
"h5pcc"
commands
.
MPI
:
an
optional
MPI
library
that
fully
supports
MPI_THREAD_MULTIPLE
.
Before
running
configure
the
"mpirun"
command
should
be
available
in
the
shell
.
If
your
command
isn
'
t
called
"mpirun"
then
define
the
"MPIRUN"
environment
variable
,
either
in
the
shell
or
when
running
configure
.
-
MPI
:
to
run
on
more
than
one
node
an
MPI
library
that
fully
supports
MPI_THREAD_MULTIPLE
.
Before
running
configure
the
"mpirun"
command
should
be
available
in
the
shell
.
If
your
command
isn
'
t
called
"mpirun"
then
define
the
"MPIRUN"
environment
variable
,
either
in
the
shell
or
when
running
configure
.
The
MPI
compiler
can
be
controlled
using
the
MPICC
variable
,
much
like
the
CC
one
.
Use
this
when
your
MPI
compiler
has
a
none
-
standard
name
.
The
MPI
compiler
can
be
controlled
using
the
MPICC
variable
,
much
like
the
CC
one
.
Use
this
when
your
MPI
compiler
has
a
none
-
standard
name
.
METIS
:
a
build
of
the
METIS
library
can
be
optionally
used
to
optimize
the
load
between
MPI
nodes
(
requires
an
MPI
library
)
.
This
should
be
found
in
the
standard
installation
directories
,
or
pointed
at
using
the
"--with-metis"
configuration
option
.
In
this
case
the
top
-
level
installation
directory
of
the
METIS
build
should
be
given
.
Note
to
use
METIS
you
should
at
least
supply
"--with-metis"
.
-
libtool
:
The
build
system
relies
on
libtool
.
libNUMA
:
a
build
of
the
NUMA
library
can
be
used
to
pin
the
threads
to
the
physical
core
of
the
machine
SWIFT
is
running
on
.
This
is
not
always
necessary
as
the
OS
scheduler
may
do
a
good
job
at
distributing
the
threads
among
the
different
cores
on
each
computing
node
.
Optional
Dependencies
=====================
DOXYGEN
:
the
doxygen
library
is
required
to
create
the
SWIFT
API
documentation
.
-
METIS
:
a
build
of
the
METIS
library
can
be
optionally
used
to
optimize
the
load
between
MPI
nodes
(
requires
an
MPI
library
)
.
This
should
be
found
in
the
standard
installation
directories
,
or
pointed
at
using
the
"--with-metis"
configuration
option
.
In
this
case
the
top
-
level
installation
directory
of
the
METIS
build
should
be
given
.
Note
to
use
METIS
you
should
at
least
supply
"--with-metis"
.
-
libNUMA
:
a
build
of
the
NUMA
library
can
be
used
to
pin
the
threads
to
the
physical
core
of
the
machine
SWIFT
is
running
on
.
This
is
not
always
necessary
as
the
OS
scheduler
may
do
a
good
job
at
distributing
the
threads
among
the
different
cores
on
each
computing
node
.
-
TCMalloc
:
a
build
of
the
TCMalloc
library
(
part
of
gperftools
)
can
be
used
to
obtain
faster
allocations
than
the
standard
C
malloc
function
part
of
glibc
.
The
option
"-with-tcmalloc"
should
be
passed
to
the
configuration
script
to
use
it
.
-
gperftools
:
a
build
of
gperftools
can
be
used
to
obtain
good
profiling
of
the
code
.
The
option
"-with-profiler"
needs
to
be
passed
to
the
configuration
script
to
use
it
.
-
DOXYGEN
:
the
doxygen
library
is
required
to
create
the
SWIFT
API
documentation
.
...
...
README
View file @
32298b94
...
...
@@ -13,8 +13,6 @@ See INSTALL.swift for install instructions.
Usage: swift [OPTION]... PARAMFILE
swift_mpi [OPTION]... PARAMFILE
swift_fixdt [OPTION]... PARAMFILE
swift_fixdt_mpi [OPTION]... PARAMFILE
Valid options are:
-a Pin runners using processor affinity
...
...
configure.ac
View file @
32298b94
...
...
@@ -170,6 +170,18 @@ if test "x$enable_debug" = "xyes"; then
fi
fi
# Check if task debugging is on.
AC_ARG_ENABLE([task-debugging],
[AS_HELP_STRING([--enable-task-debugging],
[Store task timing information and generate task dump files @<:@yes/no@:>@]
)],
[enable_task_debugging="$enableval"],
[enable_task_debugging="no"]
)
if test "$enable_task_debugging" = "yes"; then
AC_DEFINE([SWIFT_DEBUG_TASKS],1,[Enable task debugging])
fi
# Define HAVE_POSIX_MEMALIGN if it works.
AX_FUNC_POSIX_MEMALIGN
...
...
@@ -355,7 +367,7 @@ fi
AC_SUBST([TCMALLOC_LIBS])
AM_CONDITIONAL([HAVETCMALLOC],[test -n "$TCMALLOC_LIBS"])
# Check for -lprofiler usually part of the gp
r
eftools along with tcmalloc.
# Check for -lprofiler usually part of the gpe
r
ftools along with tcmalloc.
have_profiler="no"
AC_ARG_WITH([profiler],
[AS_HELP_STRING([--with-profiler],
...
...
@@ -595,6 +607,7 @@ AC_MSG_RESULT([
CPU profiler : $have_profiler
Hydro scheme : $with_hydro
Dimensionality : $with_dimension
Task debugging : $enable_task_debugging
])
# Generate output.
...
...
examples/CoolingBox/coolingBox.yml
View file @
32298b94
# Define the system of units to use internally.
InternalUnitSystem
:
UnitMass_in_cgs
:
2.0e33
# Solar masses
UnitLength_in_cgs
:
3.0
1
e21
# Kilparsecs
UnitLength_in_cgs
:
3.0
857
e21
# Kil
o
parsecs
UnitVelocity_in_cgs
:
1.0e5
# Time unit is cooling time
UnitCurrent_in_cgs
:
1
# Amperes
UnitTemp_in_cgs
:
1
# Kelvin
...
...
@@ -9,9 +9,9 @@ InternalUnitSystem:
# Parameters governing the time integration
TimeIntegration
:
time_begin
:
0.
# The starting time of the simulation (in internal units).
time_end
:
1.0
# The end time of the simulation (in internal units).
dt_min
:
1e-
6
# The minimal time-step size of the simulation (in internal units).
dt_max
:
1e-
2
# The maximal time-step size of the simulation (in internal units).
time_end
:
4.
# The end time of the simulation (in internal units).
dt_min
:
1e-
4
# The minimal time-step size of the simulation (in internal units).
dt_max
:
1e-
4
# The maximal time-step size of the simulation (in internal units).
# Parameters governing the snapshots
Snapshots
:
...
...
@@ -27,7 +27,6 @@ Statistics:
SPH
:
resolution_eta
:
1.2348
# Target smoothing length in units of the mean inter-particle separation (1.2348 == 48Ngbs with the cubic spline kernel).
delta_neighbours
:
0.1
# The tolerance for the targetted number of neighbours.
max_smoothing_length
:
0.1
# Maximal smoothing length allowed (in internal units).
CFL_condition
:
0.1
# Courant-Friedrich-Levy condition for time integration.
# Parameters related to the initial conditions
...
...
@@ -36,9 +35,8 @@ InitialConditions:
# Dimensionless pre-factor for the time-step condition
LambdaCooling
:
lambda
:
0.0
# Cooling rate (in cgs units)
lambda
_cgs
:
1.0e-22
# Cooling rate (in cgs units)
minimum_temperature
:
1.0e4
# Minimal temperature (Kelvin)
mean_molecular_weight
:
0.59
# Mean molecular weight
hydrogen_mass_abundance
:
0.75
# Hydrogen mass abundance (dimensionless)
cooling_tstep_mult
:
1.0
# Dimensionless pre-factor for the time-step condition
examples/CoolingBox/energy_plot.py
View file @
32298b94
...
...
@@ -13,7 +13,7 @@ m_p = 1.67e-24 #proton mass
#initial conditions set in makeIC.py
rho
=
3.2e3
P
=
4.5e6
n_H_cgs
=
0.0001
#
n_H_cgs = 0.0001
gamma
=
5.
/
3.
T_init
=
1.0e5
...
...
@@ -24,7 +24,7 @@ unit_mass = units.attrs["Unit mass in cgs (U_M)"]
unit_length
=
units
.
attrs
[
"Unit length in cgs (U_L)"
]
unit_time
=
units
.
attrs
[
"Unit time in cgs (U_t)"
]
parameters
=
f
[
"Parameters"
]
cooling_lambda
=
float
(
parameters
.
attrs
[
"LambdaCooling:lambda"
])
cooling_lambda
=
float
(
parameters
.
attrs
[
"LambdaCooling:lambda
_cgs
"
])
min_T
=
float
(
parameters
.
attrs
[
"LambdaCooling:minimum_temperature"
])
mu
=
float
(
parameters
.
attrs
[
"LambdaCooling:mean_molecular_weight"
])
X_H
=
float
(
parameters
.
attrs
[
"LambdaCooling:hydrogen_mass_abundance"
])
...
...
@@ -32,50 +32,65 @@ X_H = float(parameters.attrs["LambdaCooling:hydrogen_mass_abundance"])
#get number of particles
header
=
f
[
"Header"
]
n_particles
=
header
.
attrs
[
"NumPart_ThisFile"
][
0
]
#read energy and time arrays
array
=
np
.
genfromtxt
(
stats_filename
,
skip_header
=
1
)
time
=
array
[:,
0
]
total_energy
=
array
[:,
2
]
kin_plus_therm
=
array
[:,
2
]
radiated
=
array
[:,
6
]
total_mass
=
array
[:,
1
]
#ignore first row where there are just zeros
time
=
time
[
1
:]
total_energy
=
total_energy
[
1
:]
kin_plus_therm
=
kin_plus_therm
[
1
:]
radiated
=
radiated
[
1
:]
total_mass
=
total_mass
[
1
:]
total_energy
=
kin_plus_therm
+
radiated
initial_energy
=
total_energy
[
0
]
#conversions to cgs
rho_cgs
=
rho
*
unit_mass
/
(
unit_length
)
**
3
time_cgs
=
time
*
unit_time
u_init_cgs
=
total_energy
[
0
]
/
(
total_mass
[
0
])
*
unit_length
**
2
/
(
unit_time
)
**
2
initial_energy_cgs
=
initial_energy
/
total_mass
[
0
]
*
unit_length
**
2
/
(
unit_time
)
**
2
n_H_cgs
=
X_H
*
rho_cgs
/
m_p
#find the energy floor
print
min_T
u_floor_cgs
=
k_b
*
min_T
/
(
mu
*
m_p
*
(
gamma
-
1.
))
#find analytic solution
analytic_time
=
np
.
linspace
(
time_cgs
[
0
],
time_cgs
[
-
1
],
1000
)
print
time_cgs
[
1
]
print
analytic_time
[
1
]
analytic_time_cgs
=
np
.
linspace
(
0
,
time_cgs
[
-
1
],
1000
)
du_dt_cgs
=
-
cooling_lambda
*
n_H_cgs
**
2
/
rho_cgs
u_analytic
=
du_dt_cgs
*
(
analytic_time
-
analytic_time
[
0
])
+
u_init_cgs
cooling_time
=
u_init_cgs
/
(
-
du_dt_cgs
)
#rescale energy to initial energy
total_energy
/=
total_energy
[
0
]
u_analytic
/=
u_init_cgs
u_floor_cgs
/=
u_init_cgs
# plot_title = r"$\Lambda \, = \, %1.1g \mathrm{erg}\mathrm{cm^3}\mathrm{s^{-1}} \, \, T_{init} = %1.1g\mathrm{K} \, \, T_{floor} = %1.1g\mathrm{K} \, \, n_H = %1.1g\mathrm{cm^{-3}}$" %(cooling_lambda,T_init,T_floor,n_H)
# plot_filename = "energy_plot_creasey_no_cooling_T_init_1p0e5_n_H_0p1.png"
#analytic_solution = np.zeros(n_snaps-1)
for
i
in
range
(
u_analytic
.
size
):
if
u_analytic
[
i
]
<
u_floor_cgs
:
u_analytic
[
i
]
=
u_floor_cgs
plt
.
plot
(
time_cgs
,
total_energy
,
'k'
,
label
=
"Numerical solution"
)
plt
.
plot
(
analytic_time
,
u_analytic
,
'--r'
,
lw
=
2.0
,
label
=
"Analytic Solution"
)
plt
.
plot
((
cooling_time
,
cooling_time
),(
0
,
1
),
'b'
,
label
=
"Cooling time"
)
plt
.
plot
((
time_cgs
[
0
],
time_cgs
[
0
]),(
0
,
1
),
'm'
,
label
=
"First output"
)
plt
.
title
(
r
"$n_H = %1.1e \, \mathrm{cm}^{-3}$"
%
n_H_cgs
)
plt
.
xlabel
(
"Time (seconds)"
)
plt
.
ylabel
(
"Energy/Initial energy"
)
u_analytic_cgs
=
du_dt_cgs
*
analytic_time_cgs
+
initial_energy_cgs
cooling_time_cgs
=
initial_energy_cgs
/
(
-
du_dt_cgs
)
for
i
in
range
(
u_analytic_cgs
.
size
):
if
u_analytic_cgs
[
i
]
<
u_floor_cgs
:
u_analytic_cgs
[
i
]
=
u_floor_cgs
#rescale analytic solution
u_analytic
=
u_analytic_cgs
/
initial_energy_cgs
#put time in units of cooling_time
time
=
time_cgs
/
cooling_time_cgs
analytic_time
=
analytic_time_cgs
/
cooling_time_cgs
#rescale (numerical) energy by initial energy
radiated
/=
initial_energy
kin_plus_therm
/=
initial_energy
total_energy
=
kin_plus_therm
+
radiated
plt
.
plot
(
time
,
kin_plus_therm
,
'kd'
,
label
=
"Kinetic + thermal energy"
)
plt
.
plot
(
time
,
radiated
,
'bo'
,
label
=
"Radiated energy"
)
plt
.
plot
(
time
,
total_energy
,
'g'
,
label
=
"Total energy"
)
plt
.
plot
(
analytic_time
,
u_analytic
,
'r'
,
lw
=
2.0
,
label
=
"Analytic Solution"
)
#plt.plot(analytic_time,1-u_analytic,'k',lw = 2.0)
#plt.plot((cooling_time,cooling_time),(0,1),'b',label = "Cooling time")
#plt.plot((time[1]-time_cgs[0],time_cgs[1]-time_cgs[0]),(0,1),'m',label = "First output")
#plt.title(r"$n_H = %1.1e \, \mathrm{cm}^{-3}$" %n_H_cgs)
plt
.
xlabel
(
"Time / cooling time"
)
plt
.
ylabel
(
"Energy / Initial energy"
)
#plt.ylim(0,1.1)
plt
.
ylim
(
0.999
,
1.001
)
plt
.
xlim
(
0
,
min
(
10
.0
*
cooling_time
,
time
_cgs
[
-
1
]))
#
plt.xlim(0,min(10,time[-1]))
plt
.
legend
(
loc
=
"upper right"
)
if
(
int
(
sys
.
argv
[
1
])
==
0
):
plt
.
show
()
...
...
examples/CoolingBox/makeIC.py
View file @
32298b94
...
...
@@ -27,10 +27,10 @@ from numpy import *
# Parameters
periodic
=
1
# 1 For periodic box
boxSize
=
1
#1 kiloparsec
boxSize
=
1
#
1 kiloparsec
L
=
int
(
sys
.
argv
[
1
])
# Number of particles along one axis
rho
=
3.2e3
# Density in code units (0.
0
1 hydrogen atoms per cm^3)
P
=
4.5e6
# Pressure in code units (at 10^5K)
rho
=
3.2e3
# Density in code units (
3.2e6 is
0.1 hydrogen atoms per cm^3)
P
=
4.5e6
# Pressure in code units (at 10^5K)
gamma
=
5.
/
3.
# Gas adiabatic index
eta
=
1.2349
# 48 ngbs with cubic spline kernel
fileName
=
"coolingBox.hdf5"
...
...
@@ -63,9 +63,9 @@ grp.attrs["PeriodicBoundariesOn"] = periodic
#Units
grp
=
file
.
create_group
(
"/Units"
)
grp
.
attrs
[
"Unit length in cgs (U_L)"
]
=
3.08e21
grp
.
attrs
[
"Unit length in cgs (U_L)"
]
=
3.08
57
e21
grp
.
attrs
[
"Unit mass in cgs (U_M)"
]
=
2.0e33
grp
.
attrs
[
"Unit time in cgs (U_t)"
]
=
3.08e16
grp
.
attrs
[
"Unit time in cgs (U_t)"
]
=
3.08
57
e16
grp
.
attrs
[
"Unit current in cgs (U_I)"
]
=
1.
grp
.
attrs
[
"Unit temperature in cgs (U_T)"
]
=
1.
...
...
examples/CoolingBox/run.sh
View file @
32298b94
...
...
@@ -5,6 +5,10 @@ echo "Generating initial conditions for the cooling box example..."
python makeIC.py 10
../swift
-s
-t
1 coolingBox.yml
-C
2>&1 |
tee
output.log
../swift
-s
-C
-t
16 coolingBox.yml
#-C 2>&1 | tee output.log
python energy_plot.py 0
#python test_energy_conservation.py 0
examples/CoolingBox/test_energy_conservation.py
0 → 100644
View file @
32298b94
import
numpy
as
np
import
matplotlib.pyplot
as
plt
import
h5py
as
h5
import
sys
stats_filename
=
"./energy.txt"
snap_filename
=
"coolingBox_000.hdf5"
#plot_dir = "./"
n_snaps
=
41
time_end
=
4.0
dt_snap
=
0.1
#some constants in cgs units
k_b
=
1.38E-16
#boltzmann
m_p
=
1.67e-24
#proton mass
#initial conditions set in makeIC.py
rho
=
4.8e3
P
=
4.5e6
#n_H_cgs = 0.0001
gamma
=
5.
/
3.
T_init
=
1.0e5
#find the sound speed
#Read the units parameters from the snapshot
f
=
h5
.
File
(
snap_filename
,
'r'
)
units
=
f
[
"InternalCodeUnits"
]
unit_mass
=
units
.
attrs
[
"Unit mass in cgs (U_M)"
]
unit_length
=
units
.
attrs
[
"Unit length in cgs (U_L)"
]
unit_time
=
units
.
attrs
[
"Unit time in cgs (U_t)"
]
parameters
=
f
[
"Parameters"
]
cooling_lambda
=
float
(
parameters
.
attrs
[
"LambdaCooling:lambda_cgs"
])
min_T
=
float
(
parameters
.
attrs
[
"LambdaCooling:minimum_temperature"
])
mu
=
float
(
parameters
.
attrs
[
"LambdaCooling:mean_molecular_weight"
])
X_H
=
float
(
parameters
.
attrs
[
"LambdaCooling:hydrogen_mass_abundance"
])
#get number of particles
header
=
f
[
"Header"
]
n_particles
=
header
.
attrs
[
"NumPart_ThisFile"
][
0
]
#read energy and time arrays
array
=
np
.
genfromtxt
(
stats_filename
,
skip_header
=
1
)
time
=
array
[:,
0
]
total_energy
=
array
[:,
2
]
total_mass
=
array
[:,
1
]
time
=
time
[
1
:]
total_energy
=
total_energy
[
1
:]
total_mass
=
total_mass
[
1
:]
#conversions to cgs
rho_cgs
=
rho
*
unit_mass
/
(
unit_length
)
**
3
time_cgs
=
time
*
unit_time
u_init_cgs
=
total_energy
[
0
]
/
(
total_mass
[
0
])
*
unit_length
**
2
/
(
unit_time
)
**
2
n_H_cgs
=
X_H
*
rho_cgs
/
m_p
#find the sound speed in cgs
c_s
=
np
.
sqrt
((
gamma
-
1.
)
*
k_b
*
T_init
/
(
mu
*
m_p
))
#assume box size is unit length
sound_crossing_time
=
unit_length
/
c_s
print
"Sound speed = %g cm/s"
%
c_s
print
"Sound crossing time = %g s"
%
sound_crossing_time
#find the energy floor
u_floor_cgs
=
k_b
*
min_T
/
(
mu
*
m_p
*
(
gamma
-
1.
))
#find analytic solution
analytic_time_cgs
=
np
.
linspace
(
time_cgs
[
0
],
time_cgs
[
-
1
],
1000
)
du_dt_cgs
=
-
cooling_lambda
*
n_H_cgs
**
2
/
rho_cgs
u_analytic
=
du_dt_cgs
*
(
analytic_time_cgs
-
analytic_time_cgs
[
0
])
+
u_init_cgs
cooling_time
=
u_init_cgs
/
(
-
du_dt_cgs
)
#put time in units of sound crossing time
time
=
time_cgs
/
sound_crossing_time
analytic_time
=
analytic_time_cgs
/
sound_crossing_time
#rescale energy to initial energy
total_energy
/=
total_energy
[
0
]
u_analytic
/=
u_init_cgs
u_floor_cgs
/=
u_init_cgs
# plot_title = r"$\Lambda \, = \, %1.1g \mathrm{erg}\mathrm{cm^3}\mathrm{s^{-1}} \, \, T_{init} = %1.1g\mathrm{K} \, \, T_{floor} = %1.1g\mathrm{K} \, \, n_H = %1.1g\mathrm{cm^{-3}}$" %(cooling_lambda,T_init,T_floor,n_H)
# plot_filename = "energy_plot_creasey_no_cooling_T_init_1p0e5_n_H_0p1.png"
#analytic_solution = np.zeros(n_snaps-1)
for
i
in
range
(
u_analytic
.
size
):
if
u_analytic
[
i
]
<
u_floor_cgs
:
u_analytic
[
i
]
=
u_floor_cgs
plt
.
plot
(
time
-
time
[
0
],
total_energy
,
'k'
,
label
=
"Numerical solution from energy.txt"
)
plt
.
plot
(
analytic_time
-
analytic_time
[
0
],
u_analytic
,
'r'
,
lw
=
2.0
,
label
=
"Analytic Solution"
)
#now get energies from the snapshots
snapshot_time
=
np
.
linspace
(
0
,
time_end
,
num
=
n_snaps
)
snapshot_time
=
snapshot_time
[
1
:]
snapshot_time_cgs
=
snapshot_time
*
unit_time
snapshot_time
=
snapshot_time_cgs
/
sound_crossing_time
snapshot_time
-=
snapshot_time
[
0
]
snapshot_energy
=
np
.
zeros
(
n_snaps
)
for
i
in
range
(
0
,
n_snaps
):
snap_filename
=
"coolingBox_%03d.hdf5"
%
i
f
=
h5
.
File
(
snap_filename
,
'r'
)
snapshot_internal_energy_array
=
np
.
array
(
f
[
"PartType0/InternalEnergy"
])
total_internal_energy
=
np
.
sum
(
snapshot_internal_energy_array
)
velocity_array
=
np
.
array
(
f
[
"PartType0/Velocities"
])
total_kinetic_energy
=
0.5
*
np
.
sum
(
velocity_array
**
2
)
snapshot_energy
[
i
]
=
total_internal_energy
+
total_kinetic_energy
snapshot_energy
/=
snapshot_energy
[
0
]
snapshot_energy
=
snapshot_energy
[
1
:]
plt
.
plot
(
snapshot_time
,
snapshot_energy
,
'bd'
,
label
=
"Numerical solution from snapshots"
)
#plt.title(r"$n_H = %1.1e \, \mathrm{cm}^{-3}$" %n_H_cgs)
plt
.
xlabel
(
"Time (sound crossing time)"
)
plt
.
ylabel
(
"Energy/Initial energy"
)
plt
.
ylim
(
0.99
,
1.01
)
#plt.xlim(0,min(10,time[-1]))
plt
.
legend
(
loc
=
"upper right"
)
if
(
int
(
sys
.
argv
[
1
])
==
0
):
plt
.
show
()
else
:
plt
.
savefig
(
full_plot_filename
,
format
=
"png"
)
plt
.
close
()
examples/CoolingHalo/README
0 → 100644
View file @
32298b94
To make the initial conditions we distribute gas particles randomly in
a cube with a side length twice that of the virial radius. The density
profile of the gas is proportional to r^(-2) where r is the distance
from the centre of the cube.
The parameter v_rot (in makeIC.py and cooling.yml) sets the circular
velocity of the halo, and by extension, the viral radius, viral mass,
and the internal energy of the gas such that hydrostatic equilibrium
is achieved.
While the system is initially in hydrostatic equilibrium, the cooling
of the gas means that the halo will collapse.
To run this example, make such that the code is compiled with either
the isothermal potential or softened isothermal potential, and
'const_lambda' cooling, set in src/const.h. In the latter case, a
(small) value of epsilon needs to be set in cooling.yml. 0.1 kpc
should work well.
The plotting scripts produce a plot of the density, internal energy
and radial velocity profile for each
snapshot. test_energy_conservation.py shows the evolution of energy
with time. These can be used to check if the example has run properly.
examples/CoolingHalo/cooling_halo.yml
0 → 100644
View file @
32298b94
# Define the system of units to use internally.
InternalUnitSystem
:
UnitMass_in_cgs
:
1.9885e39
# 10^6 solar masses
UnitLength_in_cgs
:
3.0856776e21
# Kiloparsecs
UnitVelocity_in_cgs
:
1e5
# Kilometres per second
UnitCurrent_in_cgs
:
1
# Amperes
UnitTemp_in_cgs
:
1
# Kelvin
# Parameters governing the time integration
TimeIntegration
:
time_begin
:
0.
# The starting time of the simulation (in internal units).
time_end
:
10.0
# The end time of the simulation (in internal units).
dt_min
:
1e-5
# The minimal time-step size of the simulation (in internal units).
dt_max
:
1e-2
# The maximal time-step size of the simulation (in internal units).
# Parameters governing the conserved quantities statistics
Statistics
:
delta_time
:
1e-2
# Time between statistics output
# Parameters governing the snapshots
Snapshots
:
basename
:
CoolingHalo
# Common part of the name of output files
time_first
:
0.
# Time of the first output (in internal units)
delta_time
:
0.1
# Time difference between consecutive outputs (in internal units)
# Parameters for the hydrodynamics scheme
SPH
:
resolution_eta
:
1.2349
# Target smoothing length in units of the mean inter-particle separation (1.2349 == 48Ngbs with the cubic spline kernel).
delta_neighbours
:
1.
# The tolerance for the targetted number of neighbours.
CFL_condition
:
0.1
# Courant-Friedrich-Levy condition for time integration.
# Parameters related to the initial conditions
InitialConditions
:
file_name
:
CoolingHalo.hdf5
# The file to read
shift_x
:
0.
# A shift to apply to all particles read from the ICs (in internal units).
shift_y
:
0.
shift_z
:
0.
# External potential parameters
SoftenedIsothermalPotential
:
position_x
:
0.
# location of centre of isothermal potential in internal units
position_y
:
0.
position_z
:
0.
vrot
:
200.
# rotation speed of isothermal potential in internal units
timestep_mult
:
0.03
# controls time step
epsilon
:
0.1
#softening for the isothermal potential
# Cooling parameters
LambdaCooling
:
lambda_cgs
:
1.0e-22
# Cooling rate (in cgs units)
minimum_temperature
:
1.0e4
# Minimal temperature (Kelvin)
mean_molecular_weight
:
0.59
# Mean molecular weight
hydrogen_mass_abundance
:
0.75
# Hydrogen mass abundance (dimensionless)
cooling_tstep_mult
:
1.0
# Dimensionless pre-factor for the time-step condition
examples/CoolingHalo/density_profile.py
0 → 100644
View file @
32298b94
import
numpy
as
np
import
h5py
as
h5
import
matplotlib.pyplot
as
plt
import
sys
n_snaps
=
11
#for the plotting
#n_radial_bins = int(sys.argv[1])
#some constants
OMEGA
=
0.3
# Cosmological matter fraction at z = 0
PARSEC_IN_CGS
=
3.0856776e18
KM_PER_SEC_IN_CGS
=
1.0e5
CONST_G_CGS
=
6.672e-8
h
=
0.67777
# hubble parameter
gamma
=
5.
/
3.
eta
=
1.2349
H_0_cgs
=
100.
*
h
*
KM_PER_SEC_IN_CGS
/
(
1.0e6
*
PARSEC_IN_CGS
)
#read some header/parameter information from the first snapshot
filename
=
"Hydrostatic_000.hdf5"
f
=
h5
.
File
(
filename
,
'r'
)
params
=
f
[
"Parameters"
]
unit_mass_cgs
=
float
(
params
.
attrs
[
"InternalUnitSystem:UnitMass_in_cgs"
])
unit_length_cgs
=
float
(
params
.
attrs
[
"InternalUnitSystem:UnitLength_in_cgs"
])
unit_velocity_cgs
=
float
(
params
.
attrs
[
"InternalUnitSystem:UnitVelocity_in_cgs"
])
unit_time_cgs
=
unit_length_cgs
/
unit_velocity_cgs
v_c
=
float
(
params
.
attrs
[
"IsothermalPotential:vrot"
])
v_c_cgs
=
v_c
*
unit_velocity_cgs
header
=
f
[
"Header"
]
N
=
header
.
attrs
[
"NumPart_Total"
][
0
]
box_centre
=
np
.
array
(
header
.
attrs
[
"BoxSize"
])
#calculate r_vir and M_vir from v_c
r_vir_cgs
=
v_c_cgs
/
(
10.
*
H_0_cgs
*
np
.
sqrt
(
OMEGA
))
M_vir_cgs
=
r_vir_cgs
*
v_c_cgs
**
2
/
CONST_G_CGS
for
i
in
range
(
n_snaps
):
filename
=
"Hydrostatic_%03d.hdf5"
%
i
f
=
h5
.
File
(
filename
,
'r'
)
coords_dset
=
f
[
"PartType0/Coordinates"
]
coords
=
np
.
array
(
coords_dset
)
#translate coords by centre of box
header
=
f
[
"Header"
]
snap_time
=
header
.
attrs
[
"Time"
]
snap_time_cgs
=
snap_time
*
unit_time_cgs
coords
[:,
0
]
-=
box_centre
[
0
]
/
2.
coords
[:,
1
]
-=
box_centre
[
1
]
/
2.
coords
[:,
2
]
-=
box_centre
[
2
]
/
2.
radius
=
np
.
sqrt
(
coords
[:,
0
]
**
2
+
coords
[:,
1
]
**
2
+
coords
[:,
2
]
**
2
)
radius_cgs
=
radius
*
unit_length_cgs