Skip to content
Snippets Groups Projects
Commit 29eba05c authored by Matthieu Schaller's avatar Matthieu Schaller
Browse files

Changed the variable name for the potential's Green function from \phi to \varphi.

parent 6775e2f3
Branches
Tags
1 merge request!387Documentation of the FMM-MM code
......@@ -6,7 +6,7 @@ evaluate for each particle in a system the potential and associated
forces generated by all the other particles. Mathematically, this means
evaluate
\begin{equation}
\phi(\mathbf{x}_a) = \sum_{b \neq a} G m_b\phi(\mathbf{x}_a -
\phi(\mathbf{x}_a) = \sum_{b \neq a} G m_b\varphi(\mathbf{x}_a -
\mathbf{x}_b)\qquad \forall~a\in N
\label{eq:fmm:n_body}
\end{equation}
......@@ -23,10 +23,11 @@ arising from nearby particles. \\
In what follows, we use the compact multi-index notation of
\cite{Dehnen2014} (repeated in appendix \ref{sec:multi_index_notation}
for completeness) to simplify expressions. $\mathbf{k}$, $\mathbf{m}$
and $\mathbf{n}$ are multi-indices and $\mathbf{r}$, $\mathbf{R}$,
$\mathbf{x}$, $\mathbf{y}$ and $\mathbf{z}$ are vectors, whilst $a$
and $b$ are particle indices.\\
for completeness) to simplify expressions and ease
comparisons. $\mathbf{k}$, $\mathbf{m}$ and $\mathbf{n}$ are
multi-indices and $\mathbf{r}$, $\mathbf{R}$, $\mathbf{x}$,
$\mathbf{y}$ and $\mathbf{z}$ are vectors, whilst $a$ and $b$ are
particle indices.\\
\begin{figure}
\includegraphics[width=\columnwidth]{cells.pdf}
......@@ -46,34 +47,34 @@ with centres of mass $\mathbf{z}_A$ and $\mathbf{z}_B$
respectively, as shown on Fig.~\ref{fig:fmm:cells}, the potential
generated by $b$ at the location of $a$ can be rewritten as
\begin{align}
\phi(\mathbf{x}_a - \mathbf{x}_b)
&= \phi\left(\mathbf{x}_a - \mathbf{z}_A - \mathbf{x}_b +
\varphi(\mathbf{x}_a - \mathbf{x}_b)
&= \varphi\left(\mathbf{x}_a - \mathbf{z}_A - \mathbf{x}_b +
\mathbf{z}_B + \mathbf{z}_A - \mathbf{z}_B\right) \nonumber \\
&= \phi\left(\mathbf{r}_a - \mathbf{r}_b + \mathbf{R}\right)
&= \varphi\left(\mathbf{r}_a - \mathbf{r}_b + \mathbf{R}\right)
\nonumber \\
&= \sum_\mathbf{k} \frac{1}{\mathbf{k}!} \left(\mathbf{r}_a -
\mathbf{r}_b\right)^{\mathbf{k}} \nabla^{\mathbf{k}}\phi(\mathbf{R})
\mathbf{r}_b\right)^{\mathbf{k}} \nabla^{\mathbf{k}}\varphi(\mathbf{R})
\nonumber \\
&= \sum_\mathbf{k} \frac{1}{\mathbf{k}!} \sum_{\mathbf{n} <
\mathbf{k}} \binom{\mathbf{k}}{\mathbf{n}} \mathbf{r}_a^{\mathbf{n}}
\left(-\mathbf{r}_b\right)^{\mathbf{k} - \mathbf{n}}
\nabla^{\mathbf{k}}\phi(\mathbf{R})\nonumber \\
\nabla^{\mathbf{k}}\varphi(\mathbf{R})\nonumber \\
&= \sum_\mathbf{n} \frac{1}{\mathbf{n}!} \mathbf{r}_a^{\mathbf{n}}
\sum_\mathbf{m} \frac{1}{\mathbf{m}!}
\left(-\mathbf{r}_b\right)^\mathbf{m} \nabla^{\mathbf{n}+\mathbf{m}} \phi(\mathbf{R}),
\left(-\mathbf{r}_b\right)^\mathbf{m} \nabla^{\mathbf{n}+\mathbf{m}} \varphi(\mathbf{R}),
\end{align}
where we used the Taylor expansion of $\phi$ around $\mathbf{R} \equiv
where we used the Taylor expansion of $\varphi$ around $\mathbf{R} \equiv
\mathbf{z}_A - \mathbf{z}_B$ on the third line, used $\mathbf{r}_a
\equiv \mathbf{x}_a - \mathbf{z}_A$, $\mathbf{r}_b \equiv \mathbf{x}_b
- \mathbf{z}_B$ throughout and defined $\mathbf{m} \equiv
\mathbf{k}-\mathbf{n}$ on the last line. Expanding the series only up
to order $p$, we get
\begin{equation}
\phi(\mathbf{x}_a - \mathbf{x}_b) \approx \sum_{\mathbf{n}}^{p}
\varphi(\mathbf{x}_a - \mathbf{x}_b) \approx \sum_{\mathbf{n}}^{p}
\frac{1}{\mathbf{n}!} \mathbf{r}_a^{\mathbf{n}} \sum_{\mathbf{m}}^{p
-|\mathbf{n}|}
\frac{1}{\mathbf{m}!} \left(-\mathbf{r}_b\right)^\mathbf{m}
\nabla^{\mathbf{n}+\mathbf{m}} \phi(\mathbf{R}),
\nabla^{\mathbf{n}+\mathbf{m}} \varphi(\mathbf{R}),
\label{eq:fmm:fmm_one_part}
\end{equation}
with the approximation converging as $p\rightarrow\infty$ towards the
......@@ -82,13 +83,13 @@ correct value provided $|\mathbf{R}|<|\mathbf{r}_a +
combine their contributions to the potential at location
$\mathbf{x}_a$ in cell $A$, we get
\begin{align}
\phi_{BA}(\mathbf{x}_a) &= \sum_{b\in B} m_b\phi(\mathbf{x}_a -
\phi_{BA}(\mathbf{x}_a) &= \sum_{b\in B}G m_b\varphi(\mathbf{x}_a -
\mathbf{x}_b) \label{eq:fmm:fmm_one_cell} \\
&\approx \sum_{\mathbf{n}}^{p}
&\approx G\sum_{\mathbf{n}}^{p}
\frac{1}{\mathbf{n}!} \mathbf{r}_a^{\mathbf{n}} \sum_{\mathbf{m}}
^{p -|\mathbf{n}|}
\frac{1}{\mathbf{m}!} \sum_{b\in B} m_b\left(-\mathbf{r}_b\right)^\mathbf{m}
\nabla^{\mathbf{n}+\mathbf{m}} \phi(\mathbf{R}) \nonumber.
\nabla^{\mathbf{n}+\mathbf{m}} \varphi(\mathbf{R}) \nonumber.
\end{align}
This last equation forms the basis of the FMM. The algorithm
decomposes the equation into three separated sums evaluated at
......@@ -106,12 +107,12 @@ compute the second kernel, \textsc{M2L} (multipole to local
expansion), which corresponds to the interaction of a cell with
another one:
\begin{equation}
\mathsf{F}_{\mathbf{n}}(\mathbf{z}_A) = \sum_{\mathbf{m}}^{p -|\mathbf{n}|}
\mathsf{F}_{\mathbf{n}}(\mathbf{z}_A) = G\sum_{\mathbf{m}}^{p -|\mathbf{n}|}
\mathsf{M}_{\mathbf{m}}(\mathbf{z}_B)
\mathsf{D}_{\mathbf{n}+\mathbf{m}}(\mathbf{R}), \label{eq:fmm:M2L}
\end{equation}
where $\mathsf{D}_{\mathbf{n}+\mathbf{m}}(\mathbf{R}) \equiv
\nabla^{\mathbf{n}+\mathbf{m}} \phi(\mathbf{R})$ is an order $n+m$
\nabla^{\mathbf{n}+\mathbf{m}} \varphi(\mathbf{R})$ is an order $n+m$
derivative of the potential. This is the computationally expensive
step of the FMM algorithm as the number of operations in a naive
implementation using cartesian coordinates scales as
......@@ -165,8 +166,8 @@ multiplications (provided $\mathsf{D}$ can be evaluated quickly, see
Sec.~\ref{ssec:grav_derivatives}), which are extremely efficient
instructions on modern architectures. However, the fully expanded sums
can lead to rather large and prone to typo expressions. To avoid any
misshap, we use a \texttt{python} to generate C code in which all the
sums are unrolled and correct by construction. In \swift, we
mishaps, we use a \texttt{python} script to generate C code in which
all the sums are unrolled and correct by construction. In \swift, we
implemented the kernels up to order $p=5$, as it proved to be accurate
enough for our purpose, but this could be extended to higher order
easily. This implies storing $56$ numbers per cell for each
......
......@@ -2,36 +2,36 @@
\label{ssec:grav_derivatives}
The calculation of all the
$\mathsf{D}_\mathbf{n}(x,y,z) \equiv \nabla^{\mathbf{n}}\phi(x,y,z)$ terms up
$\mathsf{D}_\mathbf{n}(x,y,z) \equiv \nabla^{\mathbf{n}}\varphi(x,y,z)$ terms up
to the relevent order can be quite tedious and it is beneficial to
automatize the whole setup. Ideally, one would like to have an
expression for each of these terms that is only made of multiplications
and additions of each of the coordinates and the inverse distance. We
achieve this by writing $\phi$ as a composition of functions
$\phi(u(x,y,z))$ and apply the \textit{Fa\`a di Bruno}
achieve this by writing $\varphi$ as a composition of functions
$\varphi(u(x,y,z))$ and apply the \textit{Fa\`a di Bruno}
formula \citep[i.e. the ``chain rule'' for higher order derivatives,
see e.g.][]{Hardy2006} to construct our terms:
\begin{equation}
\label{eq:faa_di_bruno}
\frac{\partial^n}{\partial x_1 \cdots \partial x_n} \phi(u)
= \sum_{A} \phi^{(|A|)}(u) \prod_{B \in
\frac{\partial^n}{\partial x_1 \cdots \partial x_n} \varphi(u)
= \sum_{A} \varphi^{(|A|)}(u) \prod_{B \in
A} \frac{\partial^{|B|}}{\prod_{c\in B}\partial x_c} u(x,y,z),
\end{equation}
where $A$ is the set of all partitions of $\lbrace1,\cdots, n\rbrace$,
$B$ is a block of a partition in the set $A$ and $|\cdot|$ denotes the
cardinality of a set. For generic functions $\phi$ and $u$ this
cardinality of a set. For generic functions $\varphi$ and $u$ this
formula yields an untracktable number of terms; an 8th-order
derivative will have $4140$ (!) terms in the sum\footnote{The number
of terms in the sum is given by the Bell number of the same
order.}. \\ For the un-softened gravitational potential, we choose to write
\begin{align}
\phi(x,y,z) &= 1 / \sqrt{u(x,y,z)}, \\
\varphi(x,y,z) &= 1 / \sqrt{u(x,y,z)}, \\
u(x,y,z) &= x^2 + y^2 + z^2.
\end{align}
This choice allows to have derivatives of any order of $\phi(u)$ that
This choice allows to have derivatives of any order of $\varphi(u)$ that
can be easily expressed and only depend on powers of $u$:
\begin{equation}
\phi^{(n)}(u) = (-1)^n\cdot\frac{(2n-1)!!}{2^n}\cdot\frac{1}{u^{n+\frac{1}{2}}},
\varphi^{(n)}(u) = (-1)^n\cdot\frac{(2n-1)!!}{2^n}\cdot\frac{1}{u^{n+\frac{1}{2}}},
\end{equation}
where $!!$ denotes the semi-factorial. More importantly, this
choice of decomposition allows us to have non-zero derivatives of $u$
......@@ -39,7 +39,7 @@ only up to second order in $x$, $y$ or $z$. The number of non-zero
terms in eq. \ref{eq:faa_di_bruno} is hence drastically reduced. For
instance, when computing $\mathsf{D}_{(4,1,3)}(\mathbf{r}) \equiv
\frac{\partial^8}{\partial x^4 \partial y \partial z^3}
\phi(u(x,y,z))$, $4100$ of the $4140$ terms will involve at least one
\varphi(u(x,y,z))$, $4100$ of the $4140$ terms will involve at least one
zero-valued derivative (e.g. $\partial^3/\partial x^3$ or
$\partial^2/\partial x\partial y$) of $u$. Furthermore, among the 40
remaining terms, many will involve the same combination of derivatives
......
......@@ -141,7 +141,7 @@ plot([epsilon, epsilon], [-10, 10], 'k-', alpha=0.5, lw=0.5)
plot([epsilon/plummer_equivalent_factor, epsilon/plummer_equivalent_factor], [0, 10], 'k-', alpha=0.5, lw=0.5)
ylim(0, 2.3)
ylabel("$\\phi(r)$", labelpad=1)
ylabel("$\\varphi(r)$", labelpad=1)
#yticks([0., 0.5, 1., 1.5, 2., 2.5], ["$%.1f$"%(0.*epsilon), "$%.1f$"%(0.5*epsilon), "$%.1f$"%(1.*epsilon), "$%.1f$"%(1.5*epsilon), "$%.1f$"%(2.*epsilon)])
xlim(0,r_max_plot)
......@@ -163,6 +163,6 @@ xticks([0., 0.5, 1., 1.5, 2., 2.5], ["$%.1f$"%(0./epsilon), "", "$%.1f$"%(1./eps
xlabel("$r/H$", labelpad=-7)
ylim(0, 0.95)
ylabel("$|\\overrightarrow{\\nabla}\\phi(r)|$", labelpad=0)
ylabel("$|\\overrightarrow{\\nabla}\\varphi(r)|$", labelpad=0)
savefig("potential.pdf")
......@@ -7,7 +7,7 @@ the notation $\mathbf{r}=(r_x, r_y, r_z)$, $r = |\mathbf{r}|$ and
$u=r/H$. Starting from the potential (Eq. \ref{eq:fmm:potential},
reproduced here for clarity),
\begin{align}
\mathsf{D}_{000}(\mathbf{r}) = \phi (\mathbf{r},H) =
\mathsf{D}_{000}(\mathbf{r}) = \varphi (\mathbf{r},H) =
\left\lbrace\begin{array}{rcl}
\frac{1}{H} \left(-3u^7 + 15u^6 - 28u^5 + 21u^4 - 7u^2 + 3\right) & \mbox{if} & u < 1,\\
\frac{1}{r} & \mbox{if} & u \geq 1,
......@@ -19,7 +19,7 @@ we can construct the higher order terms by successively applying the
relevant ones here split by order.
\begin{align}
\mathsf{D}_{100}(\mathbf{r}) = \frac{\partial}{\partial r_x} \phi (\mathbf{r},H) =
\mathsf{D}_{100}(\mathbf{r}) = \frac{\partial}{\partial r_x} \varphi (\mathbf{r},H) =
\left\lbrace\begin{array}{rcl}
-\frac{r_x}{H^3} \left(21u^5 - 90u^4 + 140u^3 - 84u^2 + 14\right) & \mbox{if} & u < 1,\\
-\frac{r_x}{r^3} & \mbox{if} & u \geq 1,
......@@ -30,7 +30,7 @@ relevant ones here split by order.
\noindent\rule{6cm}{0.4pt}
\begin{align}
\mathsf{D}_{200}(\mathbf{r}) = \frac{\partial^2}{\partial r_x^2} \phi (\mathbf{r},H) =
\mathsf{D}_{200}(\mathbf{r}) = \frac{\partial^2}{\partial r_x^2} \varphi (\mathbf{r},H) =
\left\lbrace\begin{array}{rcl}
\frac{r_x^2}{H^5}\left(-105u^3+360u^2-420u+168\right) -
\frac{1}{H^3} \left(21u^5 - 90u^4 + 140u^3 - 84u^2 + 14\right) & \mbox{if} & u < 1,\\
......@@ -40,7 +40,7 @@ relevant ones here split by order.
\end{align}
\begin{align}
\mathsf{D}_{110}(\mathbf{r}) = \frac{\partial^2}{\partial r_x\partial r_y} \phi (\mathbf{r},H) =
\mathsf{D}_{110}(\mathbf{r}) = \frac{\partial^2}{\partial r_x\partial r_y} \varphi (\mathbf{r},H) =
\left\lbrace\begin{array}{rcl}
\frac{r_xr_y}{H^5}\left(-105u^3+360u^2-420u+168\right) & \mbox{if} & u < 1,\\
3\frac{r_xr_y}{r^5} & \mbox{if} & u \geq 1,
......@@ -51,7 +51,7 @@ relevant ones here split by order.
\noindent\rule{6cm}{0.4pt}
\begin{align}
\mathsf{D}_{300}(\mathbf{r}) = \frac{\partial^3}{\partial r_x^3} \phi (\mathbf{r},H) =
\mathsf{D}_{300}(\mathbf{r}) = \frac{\partial^3}{\partial r_x^3} \varphi (\mathbf{r},H) =
\left\lbrace\begin{array}{rcl}
-\frac{r_x^3}{H^7} \left(315u - 720 + 420u^{-1}\right) +
\frac{3r_x}{H^5}\left(-105u^3+360u^2-420u+168\right) & \mbox{if} & u < 1,\\
......@@ -61,7 +61,7 @@ relevant ones here split by order.
\end{align}
\begin{align}
\mathsf{D}_{210}(\mathbf{r}) = \frac{\partial^3}{\partial r_x^3} \phi (\mathbf{r},H) =
\mathsf{D}_{210}(\mathbf{r}) = \frac{\partial^3}{\partial r_x^3} \varphi (\mathbf{r},H) =
\left\lbrace\begin{array}{rcl}
-\frac{r_x^2r_y}{H^7} \left(315u - 720 + 420u^{-1}\right) +
\frac{r_y}{H^5}\left(-105u^3+360u^2-420u+168\right) & \mbox{if} & u < 1,\\
......@@ -72,7 +72,7 @@ relevant ones here split by order.
\begin{align}
\mathsf{D}_{111}(\mathbf{r}) = \frac{\partial^3}{\partial r_x\partial r_y\partial r_z} \phi (\mathbf{r},H) =
\mathsf{D}_{111}(\mathbf{r}) = \frac{\partial^3}{\partial r_x\partial r_y\partial r_z} \varphi (\mathbf{r},H) =
\left\lbrace\begin{array}{rcl}
-\frac{r_xr_yr_z}{H^7} \left(315u - 720 + 420u^{-1}\right) & \mbox{if} & u < 1,\\
-15\frac{r_xr_yr_z}{r^7} & \mbox{if} & u \geq 1,
......
......@@ -10,9 +10,10 @@ $\epsilon$. Instead of the commonly used spline kernel of
is cheaper to compute and has a very similar overall shape. The C2
kernel has the advantage of being branch-free leading to an expression
which is faster to evaluate using vector units available on modern
architectures; it also does not require any division. We set
$\tilde\delta(\mathbf{x}) = \rho(|\mathbf{x}|) = W(|\mathbf{x}|,
3\epsilon_{\rm Plummer})$, with $W(r, H)$ given by
architectures; it also does not require any divisions to evaluate the
softened forces. We set $\tilde\delta(\mathbf{x}) =
\rho(|\mathbf{x}|) = W(|\mathbf{x}|, 3\epsilon_{\rm Plummer})$, with
$W(r, H)$ given by
\begin{align}
W(r,H) &= \frac{21}{2\pi H^3} \times \nonumber \\
......@@ -22,9 +23,9 @@ W(r,H) &= \frac{21}{2\pi H^3} \times \nonumber \\
\end{array}
\right.
\end{align}
and $u = r/H$. The potential $\phi(r,H)$ corresponding to this density distribution reads
and $u = r/H$. The potential $\varphi(r,H)$ corresponding to this density distribution reads
\begin{align}
\phi =
\varphi =
\left\lbrace\begin{array}{rcl}
\frac{1}{H} (-3u^7 + 15u^6 - 28u^5 + 21u^4 - 7u^2 + 3) & \mbox{if} & u < 1,\\
\frac{1}{r} & \mbox{if} & u \geq 1.
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment