Commit 2545e4ab authored by Matthieu Schaller's avatar Matthieu Schaller
Browse files

Merge branch 'master' into testPeriodicBC

parents 6842e754 bd229c7a
......@@ -1988,6 +1988,9 @@ INCLUDE_FILE_PATTERNS =
# This tag requires that the tag ENABLE_PREPROCESSING is set to YES.
PREDEFINED = "__attribute__(x)= "
PREDEFINED += HAVE_HDF5
PREDEFINED += WITH_MPI
PREDEFINED += WITH_VECTORIZATION
# If the MACRO_EXPANSION and EXPAND_ONLY_PREDEF tags are set to YES then this
# tag can be used to specify a list of macro names that should be expanded. The
......
......@@ -170,7 +170,7 @@ static void doreduce1(struct mpicollectgroup1 *mpigrp11,
}
/**
* @brief MPI reduce operator for #mpicollectgroup structures.
* @brief MPI reduce operator for #mpicollectgroup1 structures.
*/
static void mpicollectgroup1_reduce(void *in, void *inout, int *len,
MPI_Datatype *datatype) {
......
......@@ -1818,13 +1818,8 @@ void *runner_main(void *data) {
break;
case task_type_pair:
if (t->subtype == task_subtype_density) {
#if defined(WITH_VECTORIZATION) && defined(GADGET2_SPH)
runner_dopair1_density_vec(r, ci, cj);
#else
runner_dopair1_density(r, ci, cj);
#endif
}
if (t->subtype == task_subtype_density)
runner_dopair1_branch_density(r, ci, cj);
#ifdef EXTRA_HYDRO_LOOP
else if (t->subtype == task_subtype_gradient)
runner_dopair1_gradient(r, ci, cj);
......
......@@ -884,8 +884,11 @@ void DOSELF_SUBSET(struct runner *r, struct cell *restrict ci,
* @param r The #runner.
* @param ci The first #cell.
* @param cj The second #cell.
* @param sid The direction of the pair
* @param shift The shift vector to apply to the particles in ci.
*/
void DOPAIR1(struct runner *r, struct cell *ci, struct cell *cj) {
void DOPAIR1(struct runner *r, struct cell *ci, struct cell *cj, const int sid,
const double *shift) {
const struct engine *restrict e = r->e;
......@@ -900,22 +903,6 @@ void DOPAIR1(struct runner *r, struct cell *ci, struct cell *cj) {
TIMER_TIC;
/* Anything to do here? */
if (!cell_is_active(ci, e) && !cell_is_active(cj, e)) return;
if (!cell_are_part_drifted(ci, e) || !cell_are_part_drifted(cj, e))
error("Interacting undrifted cells.");
/* Get the sort ID. */
double shift[3] = {0.0, 0.0, 0.0};
const int sid = space_getsid(e->s, &ci, &cj, shift);
/* Have the cells been sorted? */
if (!(ci->sorted & (1 << sid)) || ci->dx_max_sort > space_maxreldx * ci->dmin)
runner_do_sort(r, ci, (1 << sid), 1);
if (!(cj->sorted & (1 << sid)) || cj->dx_max_sort > space_maxreldx * cj->dmin)
runner_do_sort(r, cj, (1 << sid), 1);
/* Get the cutoff shift. */
double rshift = 0.0;
for (int k = 0; k < 3; k++) rshift += shift[k] * runner_shift[sid][k];
......@@ -1116,6 +1103,51 @@ void DOPAIR1(struct runner *r, struct cell *ci, struct cell *cj) {
TIMER_TOC(TIMER_DOPAIR);
}
/**
* @brief Determine which version of DOPAIR1 needs to be called depending on the
* orientation of the cells or whether DOPAIR1 needs to be called at all.
*
* @param r #runner
* @param ci #cell ci
* @param cj #cell cj
*
*/
void DOPAIR1_BRANCH(struct runner *r, struct cell *ci, struct cell *cj) {
const struct engine *restrict e = r->e;
/* Anything to do here? */
if (!cell_is_active(ci, e) && !cell_is_active(cj, e)) return;
/* Check that cells are drifted. */
if (!cell_are_part_drifted(ci, e) || !cell_are_part_drifted(cj, e))
error("Interacting undrifted cells.");
/* Get the sort ID. */
double shift[3] = {0.0, 0.0, 0.0};
const int sid = space_getsid(e->s, &ci, &cj, shift);
/* Have the cells been sorted? */
if (!(ci->sorted & (1 << sid)) || ci->dx_max_sort > space_maxreldx * ci->dmin)
runner_do_sort(r, ci, (1 << sid), 1);
if (!(cj->sorted & (1 << sid)) || cj->dx_max_sort > space_maxreldx * cj->dmin)
runner_do_sort(r, cj, (1 << sid), 1);
/* Have the cells been sorted? */
if (!(ci->sorted & (1 << sid)) || !(cj->sorted & (1 << sid)))
error("Trying to interact unsorted cells.");
#if defined(WITH_VECTORIZATION) && defined(GADGET2_SPH) && \
(DOPAIR1_BRANCH == runner_dopair1_density_branch)
if (!sort_is_corner(sid))
runner_dopair1_density_vec(r, ci, cj, sid, shift);
else
DOPAIR1(r, ci, cj, sid, shift);
#else
DOPAIR1(r, ci, cj, sid, shift);
#endif
}
/**
* @brief Compute the interactions between a cell pair (symmetric)
*
......@@ -2290,13 +2322,8 @@ void DOSUB_PAIR1(struct runner *r, struct cell *ci, struct cell *cj, int sid,
cj->dx_max_sort > cj->dmin * space_maxreldx)
runner_do_sort(r, cj, (1 << sid), 1);
/* Compute the interactions. */
#if (DOPAIR1 == runner_dopair1_density) && defined(WITH_VECTORIZATION) && \
defined(GADGET2_SPH)
runner_dopair1_density_vec(r, ci, cj);
#else
DOPAIR1(r, ci, cj);
#endif
/* Compute the interactions. */
DOPAIR1_BRANCH(r, ci, cj);
}
if (gettimer) TIMER_TOC(TIMER_DOSUB_PAIR);
......
......@@ -20,13 +20,12 @@
/* Config parameters. */
#include "../config.h"
#include "swift.h"
#include "active.h"
/* This object's header. */
#include "runner_doiact_vec.h"
/* Local headers. */
#include "active.h"
#ifdef WITH_VECTORIZATION
/**
* @brief Compute the vector remainder interactions from the secondary cache.
......@@ -262,40 +261,40 @@ __attribute__((always_inline)) INLINE static void storeInteractions(
}
}
/* @brief Populates the arrays max_di and max_dj with the maximum distances of
/**
* @brief Populates the arrays max_di and max_dj with the maximum distances of
* particles into their neighbouring cells. Also finds the first pi that
* interacts with any particle in cj and the last pj that interacts with any
* particle in ci.
*
* @param ci #cell pointer to ci
* @param cj #cell pointer to cj
* @param sort_i #entry array for particle distance in ci
* @param sort_j #entry array for particle distance in cj
* @param ci_cache #cache for cell ci
* @param cj_cache #cache for cell cj
* @param dx_max maximum particle movement allowed in cell
* @param rshift cutoff shift
* @param hi_max Maximal smoothing length in cell ci
* @param hj_max Maximal smoothing length in cell cj
* @param di_max Maximal position on the axis that can interact in cell ci
* @param dj_min Minimal position on the axis that can interact in cell ci
* @param max_di array to hold the maximum distances of pi particles into cell
* cj
* @param max_dj array to hold the maximum distances of pj particles into cell
* cj
* @param init_pi first pi to interact with a pj particle
* @param init_pj last pj to interact with a pi particle
* @param e The #engine.
*/
__attribute__((always_inline)) INLINE static void populate_max_d_no_cache(
const struct cell *ci, const struct cell *cj,
const struct entry *restrict sort_i, const struct entry *restrict sort_j,
const float dx_max, const float rshift, float *max_di, float *max_dj,
int *init_pi, int *init_pj, const struct engine *e) {
const float dx_max, const float rshift, const double hi_max,
const double hj_max, const double di_max, const double dj_min,
float *max_di, float *max_dj, int *init_pi, int *init_pj,
const struct engine *e) {
struct part *restrict parts_i = ci->parts;
struct part *restrict parts_j = cj->parts;
struct part *p = &parts_i[sort_i[0].i];
float h, d;
/* Get the distance of the last pi and the first pj on the sorted axis.*/
const float di_max = sort_i[ci->count - 1].d - rshift;
const float dj_min = sort_j[0].d;
const struct part *restrict parts_i = ci->parts;
const struct part *restrict parts_j = cj->parts;
int first_pi = 0, last_pj = cj->count - 1;
......@@ -304,19 +303,19 @@ __attribute__((always_inline)) INLINE static void populate_max_d_no_cache(
/* Populate max_di with distances. */
int active_id = ci->count - 1;
for (int k = ci->count - 1; k >= 0; k--) {
p = &parts_i[sort_i[k].i];
h = p->h;
d = sort_i[k].d + h * kernel_gamma + dx_max - rshift;
const struct part *pi = &parts_i[sort_i[k].i];
const float d = sort_i[k].d + dx_max;
max_di[k] = d;
// max_di[k] = d + h * kernel_gamma - rshift;
max_di[k] = d + hi_max;
/* If the particle is out of range set the index to
* the last active particle within range. */
if (d < dj_min) {
if (d + hi_max < dj_min) {
first_pi = active_id;
break;
} else {
if (part_is_active(p, e)) active_id = k;
if (part_is_active(pi, e)) active_id = k;
}
}
......@@ -329,19 +328,20 @@ __attribute__((always_inline)) INLINE static void populate_max_d_no_cache(
/* Populate max_dj with distances. */
active_id = 0;
for (int k = 0; k < cj->count; k++) {
p = &parts_j[sort_j[k].i];
h = p->h;
d = sort_j[k].d - h * kernel_gamma - dx_max - rshift;
const struct part *pj = &parts_j[sort_j[k].i];
const float d = sort_j[k].d - dx_max;
max_dj[k] = d;
/*TODO: don't think rshift should be taken off here, waiting on Pedro. */
// max_dj[k] = d - h * kernel_gamma - rshift;
max_dj[k] = d - hj_max;
/* If the particle is out of range set the index to
* the last active particle within range. */
if (d > di_max) {
if (d - hj_max > di_max) {
last_pj = active_id;
break;
} else {
if (part_is_active(p, e)) active_id = k;
if (part_is_active(pj, e)) active_id = k;
}
}
......@@ -611,9 +611,12 @@ __attribute__((always_inline)) INLINE void runner_doself1_density_vec(
* @param r The #runner.
* @param ci The first #cell.
* @param cj The second #cell.
* @param sid The direction of the pair
* @param shift The shift vector to apply to the particles in ci.
*/
void runner_dopair1_density_vec(struct runner *r, struct cell *ci,
struct cell *cj) {
struct cell *cj, const int sid,
const double *shift) {
#ifdef WITH_VECTORIZATION
const struct engine *restrict e = r->e;
......@@ -622,22 +625,6 @@ void runner_dopair1_density_vec(struct runner *r, struct cell *ci,
TIMER_TIC;
/* Anything to do here? */
if (!cell_is_active(ci, e) && !cell_is_active(cj, e)) return;
if (!cell_are_part_drifted(ci, e) || !cell_are_part_drifted(cj, e))
error("Interacting undrifted cells.");
/* Get the sort ID. */
double shift[3] = {0.0, 0.0, 0.0};
const int sid = space_getsid(e->s, &ci, &cj, shift);
/* Have the cells been sorted? */
if (!(ci->sorted & (1 << sid)) || ci->dx_max_sort > space_maxreldx * ci->dmin)
runner_do_sort(r, ci, (1 << sid), 1);
if (!(cj->sorted & (1 << sid)) || cj->dx_max_sort > space_maxreldx * cj->dmin)
runner_do_sort(r, cj, (1 << sid), 1);
/* Get the cutoff shift. */
double rshift = 0.0;
for (int k = 0; k < 3; k++) rshift += shift[k] * runner_shift[sid][k];
......@@ -726,8 +713,9 @@ void runner_dopair1_density_vec(struct runner *r, struct cell *ci,
/* Find particles maximum distance into cj, max_di[] and ci, max_dj[]. */
/* Also find the first pi that interacts with any particle in cj and the last
* pj that interacts with any particle in ci. */
populate_max_d_no_cache(ci, cj, sort_i, sort_j, dx_max, rshift, max_di,
max_dj, &first_pi, &last_pj, e);
populate_max_d_no_cache(ci, cj, sort_i, sort_j, dx_max, rshift, hi_max,
hj_max, di_max, dj_min, max_di, max_dj, &first_pi,
&last_pj, e);
/* Find the maximum index into cj that is required by a particle in ci. */
/* Find the maximum index into ci that is required by a particle in cj. */
......@@ -770,13 +758,22 @@ void runner_dopair1_density_vec(struct runner *r, struct cell *ci,
if (cell_is_active(ci, e)) {
/* Loop over the parts in ci. */
/* Loop over the parts in ci until nothing is within range in cj. */
for (int pid = count_i - 1; pid >= first_pi_loop && max_ind_j >= 0; pid--) {
/* Get a hold of the ith part in ci. */
struct part *restrict pi = &parts_i[sort_i[pid].i];
if (!part_is_active(pi, e)) continue;
/* Set the cache index. */
int ci_cache_idx = pid - first_pi_align;
/* Skip this particle if no particle in cj is within range of it. */
const float hi = ci_cache->h[ci_cache_idx];
const double di_test =
sort_i[pid].d + hi * kernel_gamma + dx_max - rshift;
if (di_test < dj_min) continue;
/* Determine the exit iteration of the interaction loop. */
dj = sort_j[max_ind_j].d;
while (max_ind_j > 0 && max_di[pid] < dj) {
......@@ -786,10 +783,6 @@ void runner_dopair1_density_vec(struct runner *r, struct cell *ci,
}
int exit_iteration = max_ind_j + 1;
/* Set the cache index. */
int ci_cache_idx = pid - first_pi_align;
const float hi = ci_cache->h[ci_cache_idx];
const float hig2 = hi * hi * kernel_gamma2;
vector pix, piy, piz;
......@@ -903,13 +896,24 @@ void runner_dopair1_density_vec(struct runner *r, struct cell *ci,
}
if (cell_is_active(cj, e)) {
/* Loop over the parts in cj. */
/* Loop over the parts in cj until nothing is within range in ci. */
for (int pjd = 0; pjd <= last_pj_loop && max_ind_i < count_i; pjd++) {
/* Get a hold of the jth part in cj. */
struct part *restrict pj = &parts_j[sort_j[pjd].i];
if (!part_is_active(pj, e)) continue;
/* Set the cache index. */
int cj_cache_idx = pjd;
/*TODO: rshift term. */
/* Skip this particle if no particle in ci is within range of it. */
const float hj = cj_cache->h[cj_cache_idx];
const double dj_test =
sort_j[pjd].d - hj * kernel_gamma - dx_max - rshift;
if (dj_test > di_max) continue;
/* Determine the exit iteration of the interaction loop. */
di = sort_i[max_ind_i].d;
while (max_ind_i < count_i - 1 && max_dj[pjd] > di) {
......@@ -919,10 +923,6 @@ void runner_dopair1_density_vec(struct runner *r, struct cell *ci,
}
int exit_iteration = max_ind_i;
/* Set the cache index. */
int cj_cache_idx = pjd;
const float hj = cj_cache->h[cj_cache_idx];
const float hjg2 = hj * hj * kernel_gamma2;
vector pjx, pjy, pjz;
......
......@@ -35,8 +35,8 @@
/* Function prototypes. */
void runner_doself1_density_vec(struct runner *r, struct cell *restrict c);
void runner_doself1_density_vec_2(struct runner *r, struct cell *restrict c);
void runner_dopair1_density_vec(struct runner *r, struct cell *restrict ci,
struct cell *restrict cj);
struct cell *restrict cj, const int sid,
const double *shift);
#endif /* SWIFT_RUNNER_VEC_H */
......@@ -59,19 +59,15 @@
* @brief Reads a data array from a given HDF5 group.
*
* @param grp The group from which to read.
* @param name The name of the array to read.
* @param type The #DATA_TYPE of the attribute.
* @param N The number of particles.
* @param dim The dimension of the data (1 for scalar, 3 for vector)
* @param part_c A (char*) pointer on the first occurrence of the field of
*interest in the parts array
* @param partSize The size in bytes of the particle structure.
* @param importance If COMPULSORY, the data must be present in the IC file. If
*OPTIONAL, the array will be zeroed when the data is not present.
* @param props The #io_props of the field to read
* @param N The number of particles to read on this rank.
* @param N_total The total number of particles on all ranks.
* @param offset The offset position where this rank starts reading.
* @param internal_units The #unit_system used internally
* @param ic_units The #unit_system used in the ICs
*
* @todo A better version using HDF5 hyper-slabs to read the file directly into
*the part array
* will be written once the structures have been stabilized.
* the part array will be written once the structures have been stabilized.
*/
void readArray(hid_t grp, const struct io_props props, size_t N,
long long N_total, long long offset,
......@@ -274,16 +270,17 @@ void prepareArray(struct engine* e, hid_t grp, char* fileName, FILE* xmfFile,
* @param fileName The name of the file in which the data is written
* @param xmfFile The FILE used to write the XMF description
* @param partTypeGroupName The name of the group containing the particles in
*the HDF5 file.
* @param name The name of the array to write.
* @param type The #DATA_TYPE of the array.
* the HDF5 file.
* @param props The #io_props of the field to read
* @param N The number of particles to write.
* @param dim The dimension of the data (1 for scalar, 3 for vector)
* @param part_c A (char*) pointer on the first occurrence of the field of
*interest in the parts array
* @param partSize The size in bytes of the particle structure.
* @param us The unit_system currently in use
* @param convFactor The UnitConversionFactor for this arrayo
* @param N_total The total number of particles on all ranks.
* @param offset The offset position where this rank starts writing.
* @param mpi_rank The MPI rank of this node
* @param internal_units The #unit_system used internally
* @param snapshot_units The #unit_system used in the snapshots
*
* @todo A better version using HDF5 hyper-slabs to write the file directly from
* the part array will be written once the structures have been stabilized.
*/
void writeArray(struct engine* e, hid_t grp, char* fileName, FILE* xmfFile,
char* partTypeGroupName, const struct io_props props, size_t N,
......
......@@ -64,8 +64,7 @@
* @param ic_units The #unit_system used in the ICs
*
* @todo A better version using HDF5 hyper-slabs to read the file directly into
*the part array
* will be written once the structures have been stabilized.
* the part array will be written once the structures have been stabilized.
*/
void readArray(hid_t h_grp, const struct io_props prop, size_t N,
const struct unit_system* internal_units,
......
......@@ -97,6 +97,6 @@ EXTRA_DIST = testReading.sh makeInput.py testPair.sh testPairPerturbed.sh \
test27cells.sh test27cellsPerturbed.sh testParser.sh testPeriodicBC.sh \
testPeriodicBCPerturbed.sh test125cells.sh test125cellsPerturbed.sh testParserInput.yaml \
difffloat.py tolerance_125_normal.dat tolerance_125_perturbed.dat \
tolerance_27_normal.dat tolerance_27_perturbed.dat \
tolerance_27_normal.dat tolerance_27_perturbed.dat tolerance_27_perturbed_h.dat \
tolerance_pair_normal.dat tolerance_pair_perturbed.dat \
fft_params.yml tolerance_periodic_BC_normal.dat tolerance_periodic_BC_perturbed.dat
......@@ -46,7 +46,13 @@ if len(sys.argv) == 6:
ignoreSmallRhoDh = int(sys.argv[5])
else:
ignoreSmallRhoDh = 0
# Get the particle properties being compared from the header.
with open(file1, 'r') as f:
line = f.readline()
if 'ID' in line:
part_props = line.split()[1:]
data1 = loadtxt(file1)
data2 = loadtxt(file2)
if fileTol != "":
......@@ -100,7 +106,7 @@ for i in range(n_lines_to_check):
rel_diff = 0.
if( abs_diff > 1.1*absTol[j]):
print "Absolute difference larger than tolerance (%e) for particle %d, column %d:"%(absTol[j], i,j)
print "Absolute difference larger than tolerance (%e) for particle %d, column %s:"%(absTol[j], data1[i,0], part_props[j])
print "%10s: a = %e"%("File 1", data1[i,j])
print "%10s: b = %e"%("File 2", data2[i,j])
print "%10s: |a-b| = %e"%("Difference", abs_diff)
......@@ -113,7 +119,7 @@ for i in range(n_lines_to_check):
if ignoreSmallRhoDh and j == 8 and abs(data1[i,j]) < 2e-4: continue
if( rel_diff > 1.1*relTol[j]):
print "Relative difference larger than tolerance (%e) for particle %d, column %d:"%(relTol[j], i,j)
print "Relative difference larger than tolerance (%e) for particle %d, column %s:"%(relTol[j], data1[i,0], part_props[j])
print "%10s: a = %e"%("File 1", data1[i,j])
print "%10s: b = %e"%("File 2", data2[i,j])
print "%10s: |a-b|/|a+b| = %e"%("Difference", rel_diff)
......
......@@ -432,6 +432,8 @@ void dump_particle_fields(char *fileName, struct cell *main_cell,
/* Just a forward declaration... */
void runner_dopair1_density(struct runner *r, struct cell *ci, struct cell *cj);
void runner_dopair1_branch_density(struct runner *r, struct cell *ci,
struct cell *cj);
void runner_doself1_density(struct runner *r, struct cell *ci);
void runner_dopair2_force(struct runner *r, struct cell *ci, struct cell *cj);
void runner_doself2_force(struct runner *r, struct cell *ci);
......@@ -621,6 +623,14 @@ int main(int argc, char *argv[]) {
/* Do the density calculation */
#if !(defined(MINIMAL_SPH) && defined(WITH_VECTORIZATION))
/* Initialise the particle cache. */
#ifdef WITH_VECTORIZATION
runner.ci_cache.count = 0;
cache_init(&runner.ci_cache, 512);
runner.cj_cache.count = 0;
cache_init(&runner.cj_cache, 512);
#endif
/* Run all the pairs (only once !)*/
for (int i = 0; i < 5; i++) {
for (int j = 0; j < 5; j++) {
......@@ -643,7 +653,7 @@ int main(int argc, char *argv[]) {
struct cell *cj = cells[iii * 25 + jjj * 5 + kkk];
if (cj > ci) runner_dopair1_density(&runner, ci, cj);
if (cj > ci) runner_dopair1_branch_density(&runner, ci, cj);
}
}
}
......
......@@ -30,11 +30,9 @@
/* Local headers. */
#include "swift.h"
#define ACC_THRESHOLD 1e-5
#if defined(WITH_VECTORIZATION)
#define DOSELF1 runner_doself1_density_vec
#define DOPAIR1 runner_dopair1_density_vec
#define DOPAIR1 runner_dopair1_branch_density
#define DOSELF1_NAME "runner_doself1_density_vec"
#define DOPAIR1_NAME "runner_dopair1_density_vec"
#endif
......@@ -45,7 +43,7 @@
#endif
#ifndef DOPAIR1
#define DOPAIR1 runner_dopair1_density
#define DOPAIR1 runner_dopair1_branch_density
#define DOPAIR1_NAME "runner_dopair1_density"
#endif
......@@ -64,18 +62,20 @@ enum velocity_types {
* @param offset The position of the cell offset from (0,0,0).
* @param size The cell size.
* @param h The smoothing length of the particles in units of the inter-particle
*separation.
* separation.
* @param density The density of the fluid.
* @param partId The running counter of IDs.
* @param pert The perturbation to apply to the particles in the cell in units
*of the inter-particle separation.
* of the inter-particle separation.
* @param vel The type of velocity field (0, random, divergent, rotating)
* @param h_pert The perturbation to apply to the smoothing length.
*/
struct cell *make_cell(size_t n, double *offset, double size, double h,
double density, long long *partId, double pert,
enum velocity_types vel) {
enum velocity_types vel, double h_pert) {
const size_t count = n * n * n;
const double volume = size * size * size;
float h_max = 0.f;
struct cell *cell = malloc(sizeof(struct cell));
bzero(cell, sizeof(struct cell));
......@@ -121,7 +121,11 @@ struct cell *make_cell(size_t n, double *offset, double size, double h,
part->v[2] = 0.f;
break;
}
part->h = size * h / (float)n;
if (h_pert)
part->h = size * h * random_uniform(1.f, 1.1f) / (float)n;
else
part->h = size * h / (float)n;
h_max = fmaxf(h_max, part->h);
part->id = ++(*partId);
#if defined(GIZMO_SPH) || defined(SHADOWFAX_SPH)
......@@ -156,7 +160,7 @@ struct cell *make_cell(size_t n, double *offset, double size, double h,
/* Cell properties */
cell->split = 0;
cell->h_max = h;
cell->h_max = h_max;
cell->count = count;
cell->dx_max_part = 0.;
cell->dx_max_sort = 0.;
......@@ -288,33 +292,11 @@ void dump_particle_fields(char *fileName, struct cell *main_cell,
fclose(file);
}
/**
* @brief Compares the vectorised result against
* the serial result of the interaction.
*
* @param serial_parts Particle array that has been interacted serially
* @param vec_parts Particle array to be interacted using vectors
* @param count No. of particles that have been interacted
* @param threshold Level of accuracy needed
*
* @return Non-zero value if difference found, 0 otherwise
*/
int check_results(struct part *serial_parts, struct part *vec_parts, int count,
double threshold) {
int result = 0;