Skip to content
Snippets Groups Projects
Commit 1cb606d3 authored by Folkert Nobels's avatar Folkert Nobels
Browse files

Update the tex file

parent 3129fb04
No related branches found
No related tags found
1 merge request!705Star formation following Schaye08
......@@ -59,3 +59,28 @@ archivePrefix = "arXiv",
adsurl = {http://adsabs.harvard.edu/abs/2012MNRAS.426..140D},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@ARTICLE{schaye2015,
author = {{Schaye}, J. and {Crain}, R.~A. and {Bower}, R.~G. and {Furlong}, M. and
{Schaller}, M. and {Theuns}, T. and {Dalla Vecchia}, C. and
{Frenk}, C.~S. and {McCarthy}, I.~G. and {Helly}, J.~C. and
{Jenkins}, A. and {Rosas-Guevara}, Y.~M. and {White}, S.~D.~M. and
{Baes}, M. and {Booth}, C.~M. and {Camps}, P. and {Navarro}, J.~F. and
{Qu}, Y. and {Rahmati}, A. and {Sawala}, T. and {Thomas}, P.~A. and
{Trayford}, J.},
title = "{The EAGLE project: simulating the evolution and assembly of galaxies and their environments}",
journal = {\mnras},
archivePrefix = "arXiv",
eprint = {1407.7040},
keywords = {methods: numerical, galaxies: evolution, galaxies: formation, cosmology: theory},
year = 2015,
month = jan,
volume = 446,
pages = {521-554},
doi = {10.1093/mnras/stu2058},
adsurl = {http://adsabs.harvard.edu/abs/2015MNRAS.446..521S},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
......@@ -46,8 +46,8 @@ converted to a star particle:
\end{align}
\noindent In general we use $A=1.515 \cdot 10^{-4}~\text{M}_\odot ~\text{yr}^{-1} ~\text{kpc}^{-2}$
and $n=1.4$. In the case of high densities ($n_\text{H} > 10^3 ~\text{cm}^{-3}$),
the power law will be steaper and have a value of $n=2$. This will also adjust
and $n=1.4$. In the case of high densities ($n_\text{H,thresh} > 10^3 ~\text{cm}^{-3}$),
the power law will be steaper and have a value of $n=2$ \citep{schaye2015}. This will also adjust
the normalization of the star formation law, both need to be equal at the
pressure with a corresponding density. This means we have:
\begin{align}
......@@ -74,7 +74,8 @@ In which $n_\text{H,norm}$ is the normalization of the metallicity dependent
star formation law, $Z$ the metallicity, $Z_0$ the normalization metallicity,
and $n_Z$ the power law of the metallicity dependence on density. standard
values we take for the EAGLE are $n_\text{H,norm} = 0.1 ~\text{cm}^{-3}$,
$n_Z=-0.64$ and $Z_0 = 0.002$.
$n_Z=-0.64$ and $Z_0 = 0.002$. Also we impose that the density threshold cannot
exceed the maximum value of $n_\text{H,max,norm}$ \citep{schaye2015}.
For the initial pressure determination the EAGLE code uses (Explanation needed):
\begin{align}
......@@ -93,7 +94,24 @@ Besides this we also use the more extended temperature criteria proposed by
\log_{10} T < \log_{10} T_\text{eos} + 0.5.
\end{align}
\begin{table}
\begin{tabular}{l|l|l|l}
Variable & Parameter file name & Default value & unit \\ \hline
$A$ & SchmidtLawCoeff\_MSUNpYRpKPC2 & $1.515\cdot10^{-4}$ & $M_\odot ~yr^{-1} ~kpc^{-2}$ \\
$n$ & SchmidtLawExponent & $1.4$ & none \\
$\gamma$ & gamma & $\frac{5}{3}$ & none \\
$G$ & No, in constants & - & - \\
$f_g$ & fg & $1.$ & none \\
$n_{high}$ & SchmidtLawHighDensExponent & $2.0$ & none \\
$n_{H,thresh}$ & SchmidtLawHighDens\_thresh\_HpCM3 & $10^3$ & $cm^{-3}$ \\
$n_{H,norm}$ & thresh\_norm\_HpCM3 & $.1$ & $cm^{-3}$ \\
$Z_0$ & MetDep\_Z0 & $0.002$ & none \\
$n_Z$ & MetDep\_SFthresh\_Slope & $-0.64$ & none \\
$\Delta$ & thresh\_MinOverDens & $57.7$ & none \\
$T_{crit}$ & thresh\_temp & $10^5$ & $K$ \\
$n_{H,max,norm}$ & thresh\_max\_norm\_HpCM3 & 10.0 & $cm^{-3}$
\end{tabular}
\end{table}
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment