Skip to content
Snippets Groups Projects
Commit 14b59fb5 authored by Matthieu Schaller's avatar Matthieu Schaller
Browse files

Merge branch 'JB_add_hopkins_fields_to_sph_theory' into 'master'

Added Hopkins 2013 formalism definitions in text, as well as fixed Eqn. 63…

See merge request !495
parents bcdd18c7 71e5aec5
No related branches found
No related tags found
1 merge request!495Added Hopkins 2013 formalism definitions in text, as well as fixed Eqn. 63…
...@@ -36,8 +36,9 @@ and the derivative of its density with respect to $h$: ...@@ -36,8 +36,9 @@ and the derivative of its density with respect to $h$:
\rho_{\partial h_i} \equiv \dd{\rho}{h}(\vec{x}_i) = \sum_j m_j \dd{W}{h}(\vec{x}_{ij} \rho_{\partial h_i} \equiv \dd{\rho}{h}(\vec{x}_i) = \sum_j m_j \dd{W}{h}(\vec{x}_{ij}
, h_i). , h_i).
\end{equation} \end{equation}
The gradient terms (``h-terms'') can then be computed from the density This corresponds to $x_i = \tilde{x}_i = m_i$, and $y_i =\tilde{y}_i = \rho_i$
and its derivative: in the \citet{hopkins2013} formalism. The gradient terms (``h-terms'') can
then be computed from the density and its derivative:
\begin{equation} \begin{equation}
f_i \equiv \left(1 + \frac{h_i}{3\rho_i}\rho_{\partial h_i} f_i \equiv \left(1 + \frac{h_i}{3\rho_i}\rho_{\partial h_i}
...@@ -300,15 +301,17 @@ smoothing length using: ...@@ -300,15 +301,17 @@ smoothing length using:
\bar P_{\partial h_i} \equiv \dd{\bar{P}}{h}(\vec{x}_i) = \sum_j m_j \bar P_{\partial h_i} \equiv \dd{\bar{P}}{h}(\vec{x}_i) = \sum_j m_j
\tilde{A_j} \dd{W}{h}(\vec{x}_{ij}), \label{eq:sph:pe:P_dh} \tilde{A_j} \dd{W}{h}(\vec{x}_{ij}), \label{eq:sph:pe:P_dh}
\end{equation} \end{equation}
This corresponds to $x_i = m_i \tilde{A}_i$, $\tilde{x}_i = m_i$, $y_i =
\bar{P}_i$, and $\tilde{y}_i = \rho_i$ in the \citet{hopkins2013} formalism.
The gradient terms (``h-terms'') are then obtained by combining $\bar The gradient terms (``h-terms'') are then obtained by combining $\bar
P_{\partial h_i}$ and $\rho_{\partial h_i}$ P_{\partial h_i}$ and $\rho_{\partial h_i}$ (eq. \ref{eq:sph:minimal:rho_dh}):
(eq. \ref{eq:sph:minimal:rho_dh}):
\begin{equation} \begin{align}
f_i \equiv \left(\frac{h_i}{3\rho_i}\bar P_{\partial f_{ij} = & ~ 1 - \tilde{A}_j^{-1} f_i \nonumber \\
f_i \equiv & \left(\frac{h_i}{3\rho_i}\bar P_{\partial
h_i}\right)\left(1 + \frac{h_i}{3\rho_i}\rho_{\partial h_i}\right)\left(1 + \frac{h_i}{3\rho_i}\rho_{\partial
h_i}\right)^{-1}. h_i}\right)^{-1}.
\end{equation} \end{align}
\subsubsection{Hydrodynamical accelerations (\nth{2} neighbour loop)} \subsubsection{Hydrodynamical accelerations (\nth{2} neighbour loop)}
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment