Commit 06f24b9c authored by Bert Vandenbroucke's avatar Bert Vandenbroucke
Browse files

Merged master into shadowswift_new. Probably does not compile yet.

parents 75521f40 26ecd35b
......@@ -22,11 +22,6 @@ doc/Doxyfile
examples/swift
examples/swift_mpi
examples/swift_fixdt
examples/swift_fixdt_mpi
examples/*.xmf
examples/used_parameters.yml
examples/energy.txt
examples/*/*.xmf
examples/*/*.hdf5
examples/*/*.png
......@@ -82,11 +77,17 @@ tests/testRiemannHLLC
tests/testMatrixInversion
tests/testVoronoi1D
tests/testVoronoi3D
tests/testDump
tests/testLogger
tests/benchmarkInteractions
theory/latex/swift.pdf
theory/kernel/kernels.pdf
theory/kernel/kernel_derivatives.pdf
theory/kernel/kernel_definitions.pdf
theory/SPH/Kernels/kernels.pdf
theory/SPH/Kernels/kernel_derivatives.pdf
theory/SPH/Kernels/kernel_definitions.pdf
theory/SPH/Flavours/sph_flavours.pdf
theory/SPH/EoS/eos.pdf
theory/SPH/*.pdf
theory/paper_pasc/pasc_paper.pdf
m4/libtool.m4
......
......@@ -10,3 +10,4 @@ Tom Theuns tom.theuns@durham.ac.uk
Richard G. Bower r.g.bower@durham.ac.uk
Stefan Arridge stefan.arridge@durham.ac.uk
Massimiliano Culpo massimiliano.culpo@googlemail.com
Yves Revaz yves.revaz@epfl.ch
......@@ -83,39 +83,65 @@ SWIFT depends on a number of third party libraries that should be available
before you can build it.
HDF5: a HDF5 library (v. 1.8.x or higher) is required to read and write
particle data. One of the commands "h5cc" or "h5pcc" should be
available. If "h5pcc" is located them a parallel HDF5 built for the version
of MPI located should be provided. If the command is not available then it
can be located using the "--with-hfd5" configure option. The value should
be the full path to the "h5cc" or "h5pcc" commands.
- HDF5: a HDF5 library (v. 1.8.x or higher) is required to read and
write particle data. One of the commands "h5cc" or "h5pcc"
should be available. If "h5pcc" is located them a parallel
HDF5 built for the version of MPI located should be
provided. If the command is not available then it can be
located using the "--with-hfd5" configure option. The value
should be the full path to the "h5cc" or "h5pcc" commands.
MPI: an optional MPI library that fully supports MPI_THREAD_MULTIPLE.
Before running configure the "mpirun" command should be available in the
shell. If your command isn't called "mpirun" then define the "MPIRUN"
environment variable, either in the shell or when running configure.
- MPI: to run on more than one node an MPI library that fully
supports MPI_THREAD_MULTIPLE. Before running configure the
"mpirun" command should be available in the shell. If your
command isn't called "mpirun" then define the "MPIRUN"
environment variable, either in the shell or when running
configure.
The MPI compiler can be controlled using the MPICC variable, much like
the CC one. Use this when your MPI compiler has a none-standard name.
The MPI compiler can be controlled using the MPICC variable,
much like the CC one. Use this when your MPI compiler has a
none-standard name.
METIS: a build of the METIS library can be optionally used to optimize the
load between MPI nodes (requires an MPI library). This should be found in
the standard installation directories, or pointed at using the
"--with-metis" configuration option. In this case the top-level
installation directory of the METIS build should be given. Note to use
METIS you should at least supply "--with-metis".
- libtool: The build system relies on libtool.
libNUMA: a build of the NUMA library can be used to pin the threads to
the physical core of the machine SWIFT is running on. This is not always
necessary as the OS scheduler may do a good job at distributing the threads
among the different cores on each computing node.
Optional Dependencies
=====================
DOXYGEN: the doxygen library is required to create the SWIFT API
documentation.
- METIS: a build of the METIS library can be optionally used to
optimize the load between MPI nodes (requires an MPI
library). This should be found in the standard installation
directories, or pointed at using the "--with-metis"
configuration option. In this case the top-level
installation directory of the METIS build should be
given. Note to use METIS you should at least supply
"--with-metis".
- libNUMA: a build of the NUMA library can be used to pin the threads
to the physical core of the machine SWIFT is running
on. This is not always necessary as the OS scheduler may
do a good job at distributing the threads among the
different cores on each computing node.
- TCMalloc: a build of the TCMalloc library (part of gperftools) can
be used to obtain faster allocations than the standard C
malloc function part of glibc. The option "-with-tcmalloc"
should be passed to the configuration script to use it.
- gperftools: a build of gperftools can be used to obtain good
profiling of the code. The option "-with-profiler"
needs to be passed to the configuration script to use
it.
- DOXYGEN: the doxygen library is required to create the SWIFT API
documentation.
......
......@@ -13,28 +13,28 @@ See INSTALL.swift for install instructions.
Usage: swift [OPTION]... PARAMFILE
swift_mpi [OPTION]... PARAMFILE
swift_fixdt [OPTION]... PARAMFILE
swift_fixdt_mpi [OPTION]... PARAMFILE
Valid options are:
-a Pin runners using processor affinity
-c Run with cosmological time integration
-C Run with cooling
-a Pin runners using processor affinity.
-c Run with cosmological time integration.
-C Run with cooling.
-d Dry run. Read the parameter file, allocate memory but does not read
the particles from ICs and exit before the start of time integration.
Allows user to check validy of parameter and IC files as well as memory limits.
-D Always drift all particles even the ones far from active particles.
-e Enable floating-point exceptions (debugging mode)
-f {int} Overwrite the CPU frequency (Hz) to be used for time measurements
-g Run with an external gravitational potential
-G Run with self-gravity
-D Always drift all particles even the ones far from active particles. This emulates
Gadget-[23] and GIZMO's default behaviours.
-e Enable floating-point exceptions (debugging mode).
-f {int} Overwrite the CPU frequency (Hz) to be used for time measurements.
-g Run with an external gravitational potential.
-G Run with self-gravity.
-n {int} Execute a fixed number of time steps. When unset use the time_end parameter to stop.
-s Run with SPH
-s Run with hydrodynamics.
-S Run with stars.
-t {int} The number of threads to use on each MPI rank. Defaults to 1 if not specified.
-v [12] Increase the level of verbosity
1: MPI-rank 0 writes
2: All MPI-ranks write
-y {int} Time-step frequency at which task graphs are dumped
-h Print this help message and exit
-y {int} Time-step frequency at which task graphs are dumped.
-h Print this help message and exit.
See the file examples/parameter_example.yml for an example of parameter file.
......@@ -16,7 +16,13 @@
# along with this program. If not, see <http://www.gnu.org/licenses/>.
# Init the project.
AC_INIT([SWIFT],[0.4.0])
AC_INIT([SWIFT],[0.5.0],[https://gitlab.cosma.dur.ac.uk/swift/swiftsim])
swift_config_flags="$*"
# Need to define this, instead of using fifth argument of AC_INIT, until 2.64.
AC_DEFINE([PACKAGE_URL],["www.swiftsim.com"], [Package web pages])
AC_COPYRIGHT
AC_CONFIG_SRCDIR([src/space.c])
AC_CONFIG_AUX_DIR([.])
AM_INIT_AUTOMAKE
......@@ -155,6 +161,59 @@ LT_INIT
AC_PROG_CC_C99
AC_C_INLINE
# If debugging try to show inlined functions.
if test "x$enable_debug" = "xyes"; then
# Show inlined functions.
if test "$ax_cv_c_compiler_vendor" = "gnu"; then
# Would like to use -gdwarf and let the compiler pick a good version
# but that doesn't always work.
AX_CHECK_COMPILE_FLAG([-gdwarf -fvar-tracking-assignments],
[inline_EXTRA_FLAGS="-gdwarf -fvar-tracking-assignments"],
[inline_EXTRA_FLAGS="-gdwarf-2 -fvar-tracking-assignments"])
CFLAGS="$CFLAGS $inline_EXTRA_FLAGS"
elif test "$ax_cv_c_compiler_vendor" = "intel"; then
CFLAGS="$CFLAGS -debug inline-debug-info"
fi
fi
# Check if task debugging is on.
AC_ARG_ENABLE([task-debugging],
[AS_HELP_STRING([--enable-task-debugging],
[Store task timing information and generate task dump files @<:@yes/no@:>@]
)],
[enable_task_debugging="$enableval"],
[enable_task_debugging="no"]
)
if test "$enable_task_debugging" = "yes"; then
AC_DEFINE([SWIFT_DEBUG_TASKS],1,[Enable task debugging])
fi
# Check if expensive debugging is on.
AC_ARG_ENABLE([debugging-checks],
[AS_HELP_STRING([--enable-debugging-checks],
[Activate expensive consistency checks @<:@yes/no@:>@]
)],
[enable_debugging_checks="$enableval"],
[enable_debugging_checks="no"]
)
if test "$enable_debugging_checks" = "yes"; then
AC_DEFINE([SWIFT_DEBUG_CHECKS],1,[Enable expensive debugging])
fi
# Check if gravity force checks are on for some particles.
AC_ARG_ENABLE([gravity-force-checks],
[AS_HELP_STRING([--enable-gravity-force-checks],
[Activate expensive brute-force gravity checks for a fraction 1/N of all particles @<:@N@:>@]
)],
[gravity_force_checks="$enableval"],
[gravity_force_checks="no"]
)
if test "$gravity_force_checks" == "yes"; then
AC_MSG_ERROR(Need to specify the fraction of particles to check when using --enable-gravity-force-checks!)
elif test "$gravity_force_checks" != "no"; then
AC_DEFINE_UNQUOTED([SWIFT_GRAVITY_FORCE_CHECKS], [$enableval] ,[Enable gravity brute-force checks])
fi
# Define HAVE_POSIX_MEMALIGN if it works.
AX_FUNC_POSIX_MEMALIGN
......@@ -251,7 +310,6 @@ if test "$enable_san" = "yes"; then
fi
fi
# Autoconf stuff.
AC_PROG_INSTALL
AC_PROG_MAKE_SET
......@@ -307,7 +365,7 @@ AC_ARG_WITH([tcmalloc],
[with_tcmalloc="no"]
)
if test "x$with_tcmalloc" != "xno"; then
if test "x$with_tcmalloc" != "xyes" && test "x$with_tcmalloc" != "x"; then
if test "x$with_tcmalloc" != "xyes" -a "x$with_tcmalloc" != "x"; then
tclibs="-L$with_tcmalloc -ltcmalloc"
else
tclibs="-ltcmalloc"
......@@ -317,7 +375,7 @@ if test "x$with_tcmalloc" != "xno"; then
# Could just have the minimal version.
if test "$have_tcmalloc" = "no"; then
if test "x$with_tcmalloc" != "xyes" && test "x$with_tcmalloc" != "x"; then
if test "x$with_tcmalloc" != "xyes" -a "x$with_tcmalloc" != "x"; then
tclibs="-L$with_tcmalloc -ltcmalloc_minimal"
else
tclibs="-ltcmalloc_minimal"
......@@ -340,7 +398,7 @@ fi
AC_SUBST([TCMALLOC_LIBS])
AM_CONDITIONAL([HAVETCMALLOC],[test -n "$TCMALLOC_LIBS"])
# Check for -lprofiler usually part of the gpreftools along with tcmalloc.
# Check for -lprofiler usually part of the gperftools along with tcmalloc.
have_profiler="no"
AC_ARG_WITH([profiler],
[AS_HELP_STRING([--with-profiler],
......@@ -350,7 +408,7 @@ AC_ARG_WITH([profiler],
[with_profiler="yes"]
)
if test "x$with_profiler" != "xno"; then
if test "x$with_profiler" != "xyes" && test "x$with_profiler" != "x"; then
if test "x$with_profiler" != "xyes" -a "x$with_profiler" != "x"; then
proflibs="-L$with_profiler -lprofiler"
else
proflibs="-lprofiler"
......@@ -367,6 +425,38 @@ fi
AC_SUBST([PROFILER_LIBS])
AM_CONDITIONAL([HAVEPROFILER],[test -n "$PROFILER_LIBS"])
# Check for jemalloc another fast malloc that is good with contention.
have_jemalloc="no"
AC_ARG_WITH([jemalloc],
[AS_HELP_STRING([--with-jemalloc],
[use jemalloc library or specify the directory with lib @<:@yes/no@:>@]
)],
[with_jemalloc="$withval"],
[with_jemalloc="no"]
)
if test "x$with_jemalloc" != "xno"; then
if test "x$with_jemalloc" != "xyes" -a "x$with_jemalloc" != "x"; then
jelibs="-L$with_jemalloc -ljemalloc"
else
jelibs="-ljemalloc"
fi
AC_CHECK_LIB([jemalloc],[malloc_usable_size],[have_jemalloc="yes"],[have_jemalloc="no"],
$jelibs)
if test "$have_jemalloc" = "yes"; then
JEMALLOC_LIBS="$jelibs"
else
JEMALLOC_LIBS=""
fi
fi
AC_SUBST([JEMALLOC_LIBS])
AM_CONDITIONAL([HAVEJEMALLOC],[test -n "$JEMALLOC_LIBS"])
# Don't allow both tcmalloc and jemalloc.
if test "x$have_tcmalloc" != "xno" -a "x$have_jemalloc" != "xno"; then
AC_MSG_ERROR([Cannot use tcmalloc at same time as jemalloc])
fi
# Check for HDF5. This is required.
AX_LIB_HDF5
......@@ -428,8 +518,9 @@ if test "$ac_cv_header_fftw3_h" = "yes"; then
fi
AC_SUBST([FFTW_LIBS])
# Check for Intel intrinsics header optionally used by vector.h.
# Check for Intel and PowerPC intrinsics header optionally used by vector.h.
AC_CHECK_HEADERS([immintrin.h])
AC_CHECK_HEADERS([altivec.h])
# Check for timing functions needed by cycle.h.
AC_HEADER_TIME
......@@ -451,7 +542,7 @@ AC_LINK_IFELSE([AC_LANG_PROGRAM(
AC_MSG_RESULT($rtc_ok)
# Add warning flags by default, if these can be used. Option =error adds
# -Werror to GCC, clang and Intel. Note do this last as compiler tests may
# -Werror to GCC, clang and Intel. Note do this last as compiler tests may
# become errors, if that's an issue don't use CFLAGS for these, use an AC_SUBST().
AC_ARG_ENABLE([compiler-warnings],
[AS_HELP_STRING([--enable-compiler-warnings],
......@@ -461,7 +552,7 @@ AC_ARG_ENABLE([compiler-warnings],
[enable_warn="error"]
)
if test "$enable_warn" != "no"; then
# AX_CFLAGS_WARN_ALL does not give good warning flags for the Intel compiler
# We will do this by hand instead and only default to the macro for unknown compilers
case "$ax_cv_c_compiler_vendor" in
......@@ -475,7 +566,7 @@ if test "$enable_warn" != "no"; then
AX_CFLAGS_WARN_ALL
;;
esac
# Add a "choke on warning" flag if it exists
if test "$enable_warn" = "error"; then
case "$ax_cv_c_compiler_vendor" in
......@@ -486,6 +577,222 @@ if test "$enable_warn" != "no"; then
fi
fi
# Various package configuration options.
# Hydro scheme.
AC_ARG_WITH([hydro],
[AS_HELP_STRING([--with-hydro=<scheme>],
[Hydro dynamics to use @<:@gadget2, minimal, hopkins, default, gizmo default: gadget2@:>@]
)],
[with_hydro="$withval"],
[with_hydro="gadget2"]
)
case "$with_hydro" in
gadget2)
AC_DEFINE([GADGET2_SPH], [1], [Gadget-2 SPH])
;;
minimal)
AC_DEFINE([MINIMAL_SPH], [1], [Minimal SPH])
;;
hopkins)
AC_DEFINE([HOPKINS_PE_SPH], [1], [Pressure-Entropy SPH])
;;
default)
AC_DEFINE([DEFAULT_SPH], [1], [Default SPH])
;;
gizmo)
AC_DEFINE([GIZMO_SPH], [1], [GIZMO SPH])
;;
*)
AC_MSG_ERROR([Unknown hydrodynamics scheme: $with_hydro])
;;
esac
# SPH Kernel function
AC_ARG_WITH([kernel],
[AS_HELP_STRING([--with-kernel=<kernel>],
[Kernel function to use @<:@cubic-spline, quartic-spline, quintic-spline, wendland-C2, wendland-C4, wendland-C6 default: cubic-spline@:>@]
)],
[with_kernel="$withval"],
[with_kernel="cubic-spline"]
)
case "$with_kernel" in
cubic-spline)
AC_DEFINE([CUBIC_SPLINE_KERNEL], [1], [Cubic spline kernel])
;;
quartic-spline)
AC_DEFINE([QUARTIC_SPLINE_KERNEL], [1], [Quartic spline kernel])
;;
quintic-spline)
AC_DEFINE([QUINTIC_SPLINE_KERNEL], [1], [Quintic spline kernel])
;;
wendland-C2)
AC_DEFINE([WENDLAND_C2_KERNEL], [1], [Wendland-C2 kernel])
;;
wendland-C4)
AC_DEFINE([WENDLAND_C4_KERNEL], [1], [Wendland-C4 kernel])
;;
wendland-C6)
AC_DEFINE([WENDLAND_C6_KERNEL], [1], [Wendland-C6 kernel])
;;
*)
AC_MSG_ERROR([Unknown kernel function: $with_kernel])
;;
esac
# Dimensionality of the hydro scheme.
AC_ARG_WITH([hydro-dimension],
[AS_HELP_STRING([--with-hydro-dimension=<dim>],
[dimensionality of problem @<:@3/2/1 default: 3@:>@]
)],
[with_dimension="$withval"],
[with_dimension="3"]
)
case "$with_dimension" in
1)
AC_DEFINE([HYDRO_DIMENSION_1D], [1], [1D solver])
;;
2)
AC_DEFINE([HYDRO_DIMENSION_2D], [2], [2D solver])
;;
3)
AC_DEFINE([HYDRO_DIMENSION_3D], [3], [3D solver])
;;
*)
AC_MSG_ERROR([Dimensionality must be 1, 2 or 3])
;;
esac
# Equation of state
AC_ARG_WITH([equation-of-state],
[AS_HELP_STRING([--with-equation-of-state=<EoS>],
[equation of state @<:@ideal-gas, isothermal-gas default: ideal-gas@:>@]
)],
[with_eos="$withval"],
[with_eos="ideal-gas"]
)
case "$with_eos" in
ideal-gas)
AC_DEFINE([EOS_IDEAL_GAS], [1], [Ideal gas equation of state])
;;
isothermal-gas)
AC_DEFINE([EOS_ISOTHERMAL_GAS], [1], [Isothermal gas equation of state])
;;
*)
AC_MSG_ERROR([Unknown equation of state: $with_eos])
;;
esac
# Adiabatic index
AC_ARG_WITH([adiabatic-index],
[AS_HELP_STRING([--with-adiabatic-index=<gamma>],
[adiabatic index @<:@5/3, 7/5, 4/3, 2 default: 5/3@:>@]
)],
[with_gamma="$withval"],
[with_gamma="5/3"]
)
case "$with_gamma" in
5/3)
AC_DEFINE([HYDRO_GAMMA_5_3], [5./3.], [Adiabatic index is 5/3])
;;
7/5)
AC_DEFINE([HYDRO_GAMMA_7_5], [7./5.], [Adiabatic index is 7/5])
;;
4/3)
AC_DEFINE([HYDRO_GAMMA_4_3], [4./3.], [Adiabatic index is 4/3])
;;
2)
AC_DEFINE([HYDRO_GAMMA_2_1], [2.], [Adiabatic index is 2])
;;
*)
AC_MSG_ERROR([Unknown adiabatic index: $with_gamma])
;;
esac
# Riemann solver
AC_ARG_WITH([riemann-solver],
[AS_HELP_STRING([--with-riemann-solver=<solver>],
[riemann solver (gizmo-sph only) @<:@none, exact, trrs, hllc, default: none@:>@]
)],
[with_riemann="$withval"],
[with_riemann="none"]
)
case "$with_riemann" in
none)
AC_DEFINE([RIEMANN_SOLVER_NONE], [1], [No Riemann solver])
;;
exact)
AC_DEFINE([RIEMANN_SOLVER_EXACT], [1], [Exact Riemann solver])
;;
trrs)
AC_DEFINE([RIEMANN_SOLVER_TRRS], [1], [Two Rarefaction Riemann Solver])
;;
hllc)
AC_DEFINE([RIEMANN_SOLVER_HLLC], [1], [Harten-Lax-van Leer-Contact Riemann solver])
;;
*)
AC_MSG_ERROR([Unknown Riemann solver: $with_riemann])
;;
esac
# Cooling function
AC_ARG_WITH([cooling],
[AS_HELP_STRING([--with-cooling=<function>],
[cooling function @<:@none, const-du, const-lambda, grackle default: none@:>@]
)],
[with_cooling="$withval"],
[with_cooling="none"]
)
case "$with_cooling" in
none)
AC_DEFINE([COOLING_NONE], [1], [No cooling function])
;;
const-du)
AC_DEFINE([COOLING_CONST_DU], [1], [Const du/dt cooling function])
;;
const-lambda)
AC_DEFINE([COOLING_CONST_LAMBDA], [1], [Const Lambda cooling function])
;;
grackle)
AC_DEFINE([COOLING_GRACKLE], [1], [Cooling via the grackle library])
;;
*)
AC_MSG_ERROR([Unknown cooling function: $with_cooling])
;;
esac
# External potential
AC_ARG_WITH([ext-potential],
[AS_HELP_STRING([--with-ext-potential=<pot>],
[external potential @<:@none, point-mass, isothermal, softened-isothermal, disc-patch, sine-wave default: none@:>@]
)],
[with_potential="$withval"],
[with_potential="none"]
)
case "$with_potential" in
none)
AC_DEFINE([EXTERNAL_POTENTIAL_NONE], [1], [No external potential])
;;
point-mass)
AC_DEFINE([EXTERNAL_POTENTIAL_POINTMASS], [1], [Point-mass external potential])
;;
isothermal)
AC_DEFINE([EXTERNAL_POTENTIAL_ISOTHERMAL], [1], [Isothermal external potential])
;;
disc-patch)
AC_DEFINE([EXTERNAL_POTENTIAL_DISC_PATCH], [1], [Disc-patch external potential])
;;
sine-wave)
AC_DEFINE([EXTERNAL_POTENTIAL_SINE_WAVE], [1], [Sine wave external potential in 1D])
;;
*)
AC_MSG_ERROR([Unknown external potential: $with_potential])
;;
esac
# Check for git, needed for revision stamps.
AC_PATH_PROG([GIT_CMD], [git])
AC_SUBST([GIT_CMD])
......@@ -504,6 +811,9 @@ AC_CONFIG_FILES([tests/test27cellsPerturbed.sh], [chmod +x tests/test27cellsPert
AC_CONFIG_FILES([tests/test125cells.sh], [chmod +x tests/test125cells.sh])
AC_CONFIG_FILES([tests/testParser.sh], [chmod +x tests/testParser.sh])
# Save the compilation options
AC_DEFINE_UNQUOTED([SWIFT_CONFIG_FLAGS],["$swift_config_flags"],[Flags passed to configure])
# Report general configuration.
AC_MSG_RESULT([
Compiler : $CC
......@@ -517,8 +827,25 @@ AC_MSG_RESULT([
FFTW3 enabled : $have_fftw3
libNUMA enabled : $have_numa
Using tcmalloc : $have_tcmalloc
Using jemalloc : $have_jemalloc
CPU profiler : $have_profiler
Hydro scheme : $with_hydro
Dimensionality : $with_dimension
Kernel function : $with_kernel
Equation of state : $with_eos
Adiabatic index : $with_gamma
Riemann solver : $with_riemann
Cooling function : $with_cooling
External potential : $with_potential
Task debugging : $enable_task_debugging
Debugging checks : $enable_debugging_checks
Gravity checks : $gravity_force_checks
])
# Make sure the latest git revision string gets included
touch src/version.c
# Generate output.
AC_OUTPUT
......@@ -762,8 +762,10 @@ WARN_LOGFILE =
INPUT = @top_srcdir@ @top_srcdir@/src @top_srcdir@/tests @top_srcdir@/examples
INPUT += @top_srcdir@/src/hydro/Minimal
INPUT += @top_srcdir@/src/gravity/Default
INPUT += @top_srcdir@/src/stars/Default
INPUT += @top_srcdir@/src/riemann
INPUT += @top_srcdir@/src/cooling/const_lambda
INPUT += @top_srcdir@/src/potential/point_mass
INPUT += @top_srcdir@/src/cooling/const_du
# This tag can be used to specify the character encoding of the source files
# that doxygen parses. Internally doxygen uses the UTF-8 encoding. Doxygen uses
......
# Define the system of units to use internally.
InternalUnitSystem:
UnitMass_in_cgs: 2.0e33 # Solar masses
UnitLength_in_cgs: 3.01e21 # Kilparsecs
UnitVelocity_in_cgs: 1.0e5 # Time unit is cooling time
UnitCurrent_in_cgs: 1 # Amperes
UnitTemp_in_cgs: 1 # Kelvin
UnitMass_in_cgs: 2.0e33 # Solar masses
UnitLength_in_cgs: 3.0857e21 # Kiloparsecs
UnitVelocity_in_cgs: 1.0e5 # Kilometers per second
UnitCurrent_in_cgs: 1 # Amperes
UnitTemp_in_cgs: 1 # Kelvin
# Parameters governing the time integration
TimeIntegration:
time_begin: 0. # The starting time of the simulation (in internal units).
time_end: 1.0 # The end time of the simulation (in internal units).
dt_min: 1e-6 # The minimal time-step size of the simulation (in internal units).
time_end: 0.25 # The end time of the simulation (in internal units).