Commit 05c67513 authored by lhausamm's avatar lhausamm
Browse files

Code works and seems to give good results

parent ffb02e38
......@@ -39,24 +39,44 @@
/* include the grackle wrapper */
#include "grackle_wrapper.h"
/*! This function computes the new entropy due to the cooling,
* between step t0 and t1.
/**
* @brief Compute the cooling rate
*
* We do nothing.
*
* @param phys_const The physical constants in internal units.
* @param us The internal system of units.
* @param cooling The #cooling_function_data used in the run.
* @param p Pointer to the particle data.
* @param dt The time-step of this particle.
*/
__attribute__((always_inline)) INLINE static double cooling_rate(
const struct phys_const* restrict phys_const,
const struct unit_system* restrict us,
const struct cooling_function_data* restrict cooling,
struct part* restrict p, float dt) {
static INLINE double do_cooling_grackle(double energy, double density,
double dtime, double* ne, double Z,
double a_now) {
if (cooling->GrackleRedshift == -1) error("TODO time dependant redshift");
/*********************************************************************
call to the main chemistry solver
*********************************************************************/
/* Get current internal energy (dt=0) */
double u_old = hydro_get_internal_energy(p);
/* Get current density */
const float rho = hydro_get_density(p);
/* Actual scaling fractor */
const float a_now = 1. / (1. + cooling->GrackleRedshift);
if (wrap_do_cooling(density, &energy, dtime, Z, a_now) == 0) {
/* 0.02041 (= 1 Zsun in Grackle v2.0, but = 1.5761 Zsun in
Grackle v2.1) */
double Z = 0.02041;
if (wrap_do_cooling(rho, &u_old, dt, Z, a_now) == 0) {
error("Error in do_cooling.\n");
return 0;
}
return energy;
return u_old;
}
/**
......@@ -76,32 +96,18 @@ __attribute__((always_inline)) INLINE static void cooling_cool_part(
const struct cooling_function_data* restrict cooling,
struct part* restrict p, struct xpart* restrict xp, float dt) {
if (dt == 0.)
return;
/* Get current internal energy (dt=0) */
const float u_old = hydro_get_internal_energy(p);
/* Get current density */
const float rho = hydro_get_density(p);
/* Actual scaling fractor */
if (cooling->GrackleRedshift == -1) error("TODO time dependant redshift");
const float a_now = 1. / (1. + cooling->GrackleRedshift);
; /* must be chaged !!! */
double ne, Z;
Z = 0.02041; /* 0.02041 (= 1 Zsun in Grackle v2.0, but = 1.5761 Zsun in
Grackle v2.1) */
ne = 0.0;
/* mass fraction of eletron */ /* useless for GRACKLE_CHEMISTRY = 0 */
/* Current du_dt */
const float hydro_du_dt = hydro_get_internal_energy_dt(p);
float u_new;
float delta_u;
u_new = do_cooling_grackle(u_old, rho, dt, &ne, Z, a_now);
// u_new = u_old * 0.99;
// if (u_new < 0)
// if (p->id==50356)
// printf("WARNING !!! ID=%llu u_old=%g u_new=%g rho=%g dt=%g ne=%g Z=%g
// a_now=%g\n",p->id,u_old,u_new,rho,dt,ne,Z,a_now);
u_new = cooling_rate(phys_const, us, cooling, p, dt);
delta_u = u_new - u_old;
......@@ -109,7 +115,7 @@ __attribute__((always_inline)) INLINE static void cooling_cool_part(
xp->cooling_data.radiated_energy += -delta_u * hydro_get_mass(p);
/* Update the internal energy */
hydro_set_internal_energy_dt(p, delta_u / dt);
hydro_set_internal_energy_dt(p, hydro_du_dt + delta_u / dt);
}
/**
......@@ -200,7 +206,7 @@ static INLINE void cooling_init_backend(
cooling->GrackleCloudyTable);
message("UVbackground = %d", UVbackground);
message("GrackleRedshift = %g", cooling->GrackleRedshift);
message("GrackleHSShieldingDensityThreshold = %g atom/cc", threshold);
message("GrackleHSShieldingDensityThreshold = %g atom/cm3", threshold);
#endif
if (wrap_init_cooling(cooling->GrackleCloudyTable, UVbackground,
......
......@@ -29,9 +29,16 @@
*/
struct cooling_function_data {
/* Filename of the Cloudy Table */
char GrackleCloudyTable[200];
/* Enable/Disable UV backgroud */
int UVbackground;
/* Redshift to use for the UV backgroud (-1 to use cosmological one) */
double GrackleRedshift;
/* Density Threshold for the shielding */
double GrackleHSShieldingDensityThreshold;
};
......
......@@ -117,17 +117,6 @@ int wrap_get_cooling_time(double rho, double u, double Z, double a_now,
error("field_size must currently be set to 1.");
}
// passed density and energy are proper
/*
if(my_units.comoving_coordinates){
den_factor = pow(a_now, 3);
u_factor = pow(a_now, 0);
} else {
den_factor = 1.0;
u_factor = 1.0;
}
*/
if (calculate_cooling_time_table(&my_units, a_now, grid_rank, grid_dimension,
grid_start, grid_end, density, energy,
x_velocity, y_velocity, z_velocity,
......@@ -137,7 +126,7 @@ int wrap_get_cooling_time(double rho, double u, double Z, double a_now,
// return updated chemistry and energy
for (int i = 0; i < FIELD_SIZE; i++) {
*coolingtime = cooling_time[i];
coolingtime[i] = cooling_time[i];
}
return 1;
......@@ -162,10 +151,6 @@ int wrap_do_cooling(double rho, double *u, double dt, double Z, double a_now) {
GRACKLE_ASSERT(FIELD_SIZE == 1);
#ifdef SWIFT_DEBUG_CHECKS
double old_value = energy[0];
#endif
message("dt = %f", dt);
if (solve_chemistry_table(&my_units, a_now, dt, grid_rank, grid_dimension,
grid_start, grid_end, density, energy, x_velocity,
y_velocity, z_velocity, metal_density) == 0) {
......@@ -173,13 +158,10 @@ int wrap_do_cooling(double rho, double *u, double dt, double Z, double a_now) {
return 0;
}
#ifdef SWIFT_DEBUG_CHECKS
GRACKLE_ASSERT(old_value != energy[0]);
#endif
// return updated chemistry and energy
for (int i = 0; i < FIELD_SIZE; i++) {
*u = energy[i] / u_factor;
u[i] = energy[i] / u_factor;
}
return 1;
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment