Skip to content
Snippets Groups Projects
Commit 01f04496 authored by Folkert Nobels's avatar Folkert Nobels
Browse files

Add theory of the star formation

parent c87aad3d
No related branches found
No related tags found
1 merge request!705Star formation following Schaye08
@ARTICLE{schaye2008,
author = {{Schaye}, J. and {Dalla Vecchia}, C.},
title = "{On the relation between the Schmidt and Kennicutt-Schmidt star formation laws and its implications for numerical simulations}",
journal = {\mnras},
archivePrefix = "arXiv",
eprint = {0709.0292},
keywords = {stars: formation , galaxies: evolution , galaxies: formation , galaxies: ISM},
year = 2008,
month = jan,
volume = 383,
pages = {1210-1222},
doi = {10.1111/j.1365-2966.2007.12639.x},
adsurl = {http://adsabs.harvard.edu/abs/2008MNRAS.383.1210S},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@ARTICLE{schaye2004,
author = {{Schaye}, J.},
title = "{Star Formation Thresholds and Galaxy Edges: Why and Where}",
journal = {\apj},
eprint = {astro-ph/0205125},
keywords = {Galaxies: Evolution, Galaxies: Formation, Galaxies: ISM, ISM: Clouds, Stars: Formation},
year = 2004,
month = jul,
volume = 609,
pages = {667-682},
doi = {10.1086/421232},
adsurl = {http://adsabs.harvard.edu/abs/2004ApJ...609..667S},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@ARTICLE{kennicutt1998,
author = {{Kennicutt}, Jr., R.~C.},
title = "{The Global Schmidt Law in Star-forming Galaxies}",
journal = {\apj},
eprint = {astro-ph/9712213},
keywords = {GALAXIES: EVOLUTION, GALAXIES: ISM, GALAXIES: SPIRAL, GALAXIES: STELLAR CONTENT, GALAXIES: STARBURST, STARS: FORMATION, Galaxies: Evolution, Galaxies: ISM, Galaxies: Spiral, Galaxies: Starburst, Galaxies: Stellar Content, Stars: Formation},
year = 1998,
month = may,
volume = 498,
pages = {541-552},
doi = {10.1086/305588},
adsurl = {http://adsabs.harvard.edu/abs/1998ApJ...498..541K},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
#!/bin/bash
echo "Generating PDF..."
pdflatex -jobname=starform starformation_standalone.tex
bibtex starform.aux
pdflatex -jobname=starform starformation_standalone.tex
pdflatex -jobname=starform starformation_standalone.tex
\section{Star Formation in EAGLE}
In this section we will shortly explain how the star formation in EAGLE works.
The implemented star formation is based on the \citet{schaye2008}, instead of
the constant density threshold used by \citet{schaye2008}, a metallicity
dependent density threshold is used, following \citet{schaye2004}. An important
property of the implemented star formation law is the explicit reproducability
of the Kennicutt-Schmidt star formation law \citep{kennicutt1998}:
\begin{align}
\dot{\Sigma}_\star &= A \left( \frac{\Sigma}{1 ~\text{M}_\odot ~\text{pc}^{-2}} \right)
\end{align}
\noindent In which $A$ is the normalization of the Kennicutt-Schmidt, $\dot{\Sigma}_\star$
is the surface density of newly formed stars, $\Sigma$ is the gas surface
density and $n$ is the power law index. In the case of the star formation
implementation of \citet{schaye2008}, the star formation law is given by
a pressure law:
\begin{align}
\dot{m}_\star &= m_g A ( 1~\text{M}_\odot~\text{pc}^{-2})^{-n} \left(
\frac{\gamma}{G} f_g P \right)^{(n-1)/2}.
\end{align}
\noindent In which $m_g$ is the gas particle mass, $\gamma$ is the ratio of specific heats,
$G$ is the gravitational constant, $f_g$ is the mass fraction of gas (unity in
EAGLE), and $P$ is the total pressure of the gas particle. In this equation
$A$ and $n$ are directly constrainted from the observations of the Kennicutt-
Schmidt law so both variables do not require tuning. Further there are
two constrains on the over density which should be $\Delta > 57.7$ (why this
specific number? \citet{schaye2008} says $\Delta \approx 60$), and the
temperature of the gas should be atleast $T_\text{crit}<10^5 ~\text{K}$
Besides this it is required that there is an effective equation of state.
Specifically we could take this to be equal to:
\begin{align}
P &= P_\text{eos} (\rho) = \left( \frac{\rho_\text{g}}{\rho_\text{g,c}} \right)^{\gamma_\text{eff}}.
\end{align}
\noindent In which $\gamma_\text{eff}$ is the polytropic index. But the EAGLE
code just uses the EOS of the gas?
\noindent Using this it is possible to calculate the propability that a gas particle is
converted to a star particle:
\begin{align}
\text{Prob.} = \text{min} \left( \frac{\dot{m}_\star \Delta t}{m_g}, 1 \right)
= \text{min} \left( A \left( 1 ~\text{M}_\odot ~\text{pc}^{-2} \right)^{-n} \left( \frac{\gamma}{G} f_g P_\text{tot} \right)^{(n-1)/2}, 1 \right).
\end{align}
\noindent In general we use $A=1.515 \cdot 10^{-4}~\text{M}_\odot ~\text{yr}^{-1} ~\text{kpc}^{-2}$
and $n=1.4$. In the case of high densities ($n_\text{H} > 10^3 ~\text{cm}^{-3}$),
the power law will be steaper and have a value of $n=2$. This will also adjust
the normalization of the star formation law, both need to be equal at the
pressure with a corresponding density. This means we have:
\begin{align}
\begin{split}
A \left( 1 ~\text{M}_\odot ~\text{pc}^{-2} \right)^{-n} \left( \frac{\gamma}{G} f_g P_\text{tot} \right)^{(n-1)/2} \\
= A_\text{high} \left( 1 ~\text{M}_\odot ~\text{pc}^{-2} \right)^{-n_\text{high}} \left( \frac{\gamma}{G} f_g P_\text{tot} \right)^{(n_\text{high}-1)/2}.
\end{split}
\end{align}
\begin{align}
A_\text{high} = A \left( 1 ~\text{M}_\odot ~\text{pc}^{-2} \right)^{n_\text{high}-n} \left( \frac{\gamma}{G} f_g P_\text{tot}(\rho_{hd}) \right)^{(n-n_\text{high})/2}.
\end{align}
This is differently from the EAGLE code ($f_g=1$) which uses:
\begin{align}
A_\text{high} = A \left( \frac{\gamma}{G} P_\text{tot} (\rho_{hd}) \right)^{(n-n_\text{high})/2} .
\end{align}
Besides this we also use the metallicity dependent density threshold given by \citep{schaye2004}:
\begin{align}
n^*_\text{H} (Z) &= n_\text{H,norm} \left( \frac{Z}{Z_0} \right)^{n_z}.
\end{align}
In which $n_\text{H,norm}$ is the normalization of the metallicity dependent
star formation law, $Z$ the metallicity, $Z_0$ the normalization metallicity,
and $n_Z$ the power law of the metallicity dependence on density. standard
values we take for the EAGLE are $n_\text{H,norm} = 0.1 ~\text{cm}^{-3}$,
$n_Z=-0.64$ and $Z_0 = 0.002$.
For the initial pressure determination the EAGLE code uses (Explanation needed):
\begin{align}
P_\text{cgs} &= (\gamma -1) \frac{n_\text{EOS, norm} \cdot m_H}{X} T_{EOS,jeans} \cdot \frac{k_B}{1.22 \cdot (\gamma -1) m_H }.
\end{align}
To determine the pressure for the star formation law the EAGLE code uses the
physical pressure? Is this the effective EOS of the real EOS of the gas?
Compared to the EAGLE code we can calculate a fraction of the calculations already
in the struct which are not depending on time, this may save some calculations.
\documentclass[fleqn, usenatbib, useAMS, a4paper]{mnras}
\usepackage{graphicx}
\usepackage{amsmath,paralist,xcolor,xspace,amssymb}
\usepackage{times}
\usepackage{comment}
\usepackage[super]{nth}
\newcommand{\todo}[1]{{\textcolor{red}{#1}}}
\newcommand{\gadget}{{\sc Gadget}\xspace}
\newcommand{\swift}{{\sc Swift}\xspace}
\newcommand{\nbody}{$N$-body\xspace}
\newcommand{\Lag}{\mathcal{L}}
%opening
\title{Star formation equations in SWIFT}
\author{Folkert Nobels}
\begin{document}
\date{\today}
\pagerange{\pageref{firstpage}--\pageref{lastpage}} \pubyear{2018}
\maketitle
\label{firstpage}
\begin{abstract}
Making stars all over again.
\end{abstract}
\begin{keywords}
\end{keywords}
\input{starformation}
\bibliographystyle{mnras}
\bibliography{./bibliography.bib}
\label{lastpage}
\end{document}
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please to comment