-
Matthieu Schaller authoredMatthieu Schaller authored
multipole.h 11.76 KiB
/*******************************************************************************
* This file is part of SWIFT.
* Copyright (c) 2013 Pedro Gonnet (pedro.gonnet@durham.ac.uk)
* 2016 Matthieu Schaller (matthieu.schaller@durham.ac.uk)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
******************************************************************************/
#ifndef SWIFT_MULTIPOLE_H
#define SWIFT_MULTIPOLE_H
/* Some standard headers. */
#include <math.h>
#include <string.h>
/* Includes. */
#include "align.h"
#include "const.h"
#include "error.h"
#include "gravity_derivatives.h"
#include "inline.h"
#include "kernel_gravity.h"
#include "minmax.h"
#include "part.h"
#define multipole_align 128
/**
* @brief The multipole expansion of a mass distribution.
*/
struct multipole {
union {
/*! Linking pointer for "memory management". */
struct multipole *next;
/*! The actual content */
struct {
/*! Multipole mass */
float mass;
/*! Centre of mass of the matter dsitribution */
double CoM[3];
/*! Bulk velocity */
float vel[3];
};
};
} SWIFT_STRUCT_ALIGN;
struct acc_tensor {
double F_000;
};
struct pot_tensor {
double F_000;
};
struct field_tensors {
union {
/*! Linking pointer for "memory management". */
struct field_tensors *next;
/*! The actual content */
struct {
/*! Field tensor for acceleration along x */
struct acc_tensor a_x;
/*! Field tensor for acceleration along y */
struct acc_tensor a_y;
/*! Field tensor for acceleration along z */
struct acc_tensor a_z;
/*! Field tensor for the potential */
struct pot_tensor pot;
};
};
} SWIFT_STRUCT_ALIGN;
/**
* @brief Reset the data of a #multipole.
*
* @param m The #multipole.
*/
INLINE static void multipole_init(struct multipole *m) {
/* Just bzero the struct. */
bzero(m, sizeof(struct multipole));
}
/**
* @brief Prints the content of a #multipole to stdout.
*
* Note: Uses directly printf(), not a call to message().
*
* @param m The #multipole to print.
*/
INLINE static void multipole_print(const struct multipole *m) {
printf("CoM= [%12.5e %12.5e %12.5e\n", m->CoM[0], m->CoM[1], m->CoM[2]);
printf("Mass= %12.5e\n", m->mass);
printf("Vel= [%12.5e %12.5e %12.5e\n", m->vel[0], m->vel[1], m->vel[2]);
}
/**
* @brief Adds a #multipole to another one (i.e. does ma += mb).
*
* @param ma The multipole to add to.
* @param mb The multipole to add.
*/
INLINE static void multipole_add(struct multipole *ma,
const struct multipole *mb) {
const float mass = ma->mass + mb->mass;
const float imass = 1.f / mass;
/* Add the bulk velocities */
ma->vel[0] = (ma->vel[0] * ma->mass + mb->vel[0] * mb->mass) * imass;
ma->vel[1] = (ma->vel[1] * ma->mass + mb->vel[1] * mb->mass) * imass;
ma->vel[2] = (ma->vel[2] * ma->mass + mb->vel[2] * mb->mass) * imass;
/* Add the masses */
ma->mass = mass;
}
/**
* @brief Verifies whether two #multipole's are equal or not.
*
* @param ma The first #multipole.
* @param mb The second #multipole.
* @param tolerance The maximal allowed difference for the fields.
* @return 1 if the multipoles are equal 0 otherwise.
*/
INLINE static int multipole_equal(const struct multipole *ma,
const struct multipole *mb,
double tolerance) {
/* Check CoM */
if (fabs(ma->CoM[0] - mb->CoM[0]) / fabs(ma->CoM[0] + mb->CoM[0]) > tolerance)
return 0;
if (fabs(ma->CoM[1] - mb->CoM[1]) / fabs(ma->CoM[1] + mb->CoM[1]) > tolerance)
return 0;
if (fabs(ma->CoM[2] - mb->CoM[2]) / fabs(ma->CoM[2] + mb->CoM[2]) > tolerance)
return 0;
/* Check bulk velocity (if non-zero)*/
if (fabsf(ma->vel[0] + mb->vel[0]) > 0.f &&
fabsf(ma->vel[0] - mb->vel[0]) / fabsf(ma->vel[0] + mb->vel[0]) >
tolerance)
return 0;
if (fabsf(ma->vel[1] + mb->vel[1]) > 0.f &&
fabsf(ma->vel[1] - mb->vel[1]) / fabsf(ma->vel[1] + mb->vel[1]) >
tolerance)
return 0;
if (fabsf(ma->vel[2] + mb->vel[2]) > 0.f &&
fabsf(ma->vel[2] - mb->vel[2]) / fabsf(ma->vel[2] + mb->vel[2]) >
tolerance)
return 0;
/* Check mass */
if (fabsf(ma->mass - mb->mass) / fabsf(ma->mass + mb->mass) > tolerance)
return 0;
/* All is good */
return 1;
}
/**
* @brief Drifts a #multipole forward in time.
*
* @param m The #multipole.
* @param dt The drift time-step.
*/
INLINE static void multipole_drift(struct multipole *m, double dt) {
/* Move the whole thing according to bulk motion */
m->CoM[0] += m->vel[0];
m->CoM[1] += m->vel[1];
m->CoM[2] += m->vel[2];
}
/**
* @brief Applies the forces due to particles j onto particles i directly.
*
* @param gparts_i The #gpart to update.
* @param gcount_i The number of particles to update.
* @param gparts_j The #gpart that source the gravity field.
* @param gcount_j The number of sources.
*/
INLINE static void multipole_P2P(struct gpart *gparts_i, int gcount_i,
const struct gpart *gparts_j, int gcount_j) {}
/**
* @brief Constructs the #multipole of a bunch of particles around their
* centre of mass.
*
* Corresponds to equation (28c).
*
* @param m The #multipole (content will be overwritten).
* @param gparts The #gpart.
* @param gcount The number of particles.
*/
INLINE static void multipole_P2M(struct multipole *m,
const struct gpart *gparts, int gcount) {
#if const_gravity_multipole_order >= 2
#error "Implementation of P2M kernel missing for this order."
#endif
/* Temporary variables */
double mass = 0.0;
double com[3] = {0.0, 0.0, 0.0};
float vel[3] = {0.f, 0.f, 0.f};
/* Collect the particle data. */
for (int k = 0; k < gcount; k++) {
const float m = gparts[k].mass;
mass += m;
com[0] += gparts[k].x[0] * m;
com[1] += gparts[k].x[1] * m;
com[2] += gparts[k].x[2] * m;
vel[0] += gparts[k].v_full[0] * m;
vel[1] += gparts[k].v_full[1] * m;
vel[2] += gparts[k].v_full[2] * m;
}
const double imass = 1.0 / mass;
/* Store the data on the multipole. */
m->mass = mass;
m->CoM[0] = com[0] * imass;
m->CoM[1] = com[1] * imass;
m->CoM[2] = com[2] * imass;
m->vel[0] = vel[0] * imass;
m->vel[1] = vel[1] * imass;
m->vel[2] = vel[2] * imass;
}
/**
* @brief Creates a copy of #multipole shifted to a new location.
*
* Corresponds to equation (28d).
*
* @param m_a The #multipole copy (content will be overwritten).
* @param m_b The #multipole to shift.
* @param pos_a The position to which m_b will be shifted.
* @param pos_b The current postion of the multipole to shift.
* @param periodic Is the calculation periodic ?
*/
INLINE static void multipole_M2M(struct multipole *m_a,
const struct multipole *m_b,
const double pos_a[3], const double pos_b[3],
int periodic) {
m_a->mass = m_b->mass;
m_a->vel[0] = m_b->vel[0];
m_a->vel[1] = m_b->vel[1];
m_a->vel[2] = m_b->vel[2];
}
/**
* @brief Compute the field tensors due to a multipole.
*
* Corresponds to equation (28b).
*
* @param l_a The field tensor to compute.
* @param m_b The multipole creating the field.
* @param pos_a The position of the field tensor.
* @param pos_b The position of the multipole.
* @param periodic Is the calculation periodic ?
*/
INLINE static void multipole_M2L(struct field_tensors *l_a,
const struct multipole m_b,
const double pos_a[3], const double pos_b[3],
int periodic) {
/* double dx, dy, dz; */
/* if (periodic) { */
/* dx = box_wrap(pos_a[0] - pos_b[0], 0., 1.); */
/* dy = box_wrap(pos_a[1] - pos_b[1], 0., 1.); */
/* dz = box_wrap(pos_a[2] - pos_b[2], 0., 1.); */
/* } else { */
/* dx = pos_a[0] - pos_b[0]; */
/* dy = pos_a[1] - pos_b[1]; */
/* dz = pos_a[2] - pos_b[2]; */
/* } */
/* const double r2 = dx * dx + dy * dy + dz * dz; */
/* const double r_inv = 1. / sqrt(r2); */
/* /\* 1st order multipole term *\/ */
/* l_a->x.F_000 = D_100(dx, dy, dz, r_inv); */
/* l_a->y.F_000 = D_010(dx, dy, dz, r_inv); */
/* l_a->z.F_000 = D_001(dx, dy, dz, r_inv); */
}
#if 0
/* Multipole function prototypes. */
void multipole_add(struct multipole *m_sum, const struct multipole *m_term);
void multipole_init(struct multipole *m, const struct gpart *gparts,
int gcount);
void multipole_reset(struct multipole *m);
/* static void multipole_iact_mm(struct multipole *ma, struct multipole *mb, */
/* double *shift); */
/* void multipole_addpart(struct multipole *m, struct gpart *p); */
/* void multipole_addparts(struct multipole *m, struct gpart *p, int N); */
/**
* @brief Compute the pairwise interaction between two multipoles.
*
* @param ma The first #multipole.
* @param mb The second #multipole.
* @param shift The periodicity correction.
*/
__attribute__((always_inline)) INLINE static void multipole_iact_mm(
struct multipole *ma, struct multipole *mb, double *shift) {
/* float dx[3], ir, r, r2 = 0.0f, acc; */
/* int k; */
/* /\* Compute the multipole distance. *\/ */
/* for (k = 0; k < 3; k++) { */
/* dx[k] = ma->x[k] - mb->x[k] - shift[k]; */
/* r2 += dx[k] * dx[k]; */
/* } */
/* /\* Compute the normalized distance vector. *\/ */
/* ir = 1.0f / sqrtf(r2); */
/* r = r2 * ir; */
/* /\* Evaluate the gravity kernel. *\/ */
/* kernel_grav_eval(r, &acc); */
/* /\* Scale the acceleration. *\/ */
/* acc *= const_G * ir * ir * ir; */
/* /\* Compute the forces on both multipoles. *\/ */
/* #if const_gravity_multipole_order == 1 */
/* float mma = ma->coeffs[0], mmb = mb->coeffs[0]; */
/* for (k = 0; k < 3; k++) { */
/* ma->a[k] -= dx[k] * acc * mmb; */
/* mb->a[k] += dx[k] * acc * mma; */
/* } */
/* #else */
/* #error( "Multipoles of order %i not yet implemented." ,
* const_gravity_multipole_order )
*/
/* #endif */
}
/**
* @brief Compute the interaction of a multipole on a particle.
*
* @param m The #multipole.
* @param p The #gpart.
* @param shift The periodicity correction.
*/
__attribute__((always_inline)) INLINE static void multipole_iact_mp(
struct multipole *m, struct gpart *p, double *shift) {
/* float dx[3], ir, r, r2 = 0.0f, acc; */
/* int k; */
/* /\* Compute the multipole distance. *\/ */
/* for (k = 0; k < 3; k++) { */
/* dx[k] = m->x[k] - p->x[k] - shift[k]; */
/* r2 += dx[k] * dx[k]; */
/* } */
/* /\* Compute the normalized distance vector. *\/ */
/* ir = 1.0f / sqrtf(r2); */
/* r = r2 * ir; */
/* /\* Evaluate the gravity kernel. *\/ */
/* kernel_grav_eval(r, &acc); */
/* /\* Scale the acceleration. *\/ */
/* acc *= const_G * ir * ir * ir * m->coeffs[0]; */
/* /\* Compute the forces on both multipoles. *\/ */
/* #if const_gravity_multipole_order == 1 */
/* for (k = 0; k < 3; k++) p->a_grav[k] += dx[k] * acc; */
/* #else */
/* #error( "Multipoles of order %i not yet implemented." ,
* const_gravity_multipole_order )
*/
/* #endif */
}
#endif
#endif /* SWIFT_MULTIPOLE_H */