-
Matthieu Schaller authoredMatthieu Schaller authored
engine.c 70.35 KiB
/*******************************************************************************
* This file is part of SWIFT.
* Coypright (c) 2012 Pedro Gonnet (pedro.gonnet@durham.ac.uk)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
******************************************************************************/
/* Config parameters. */
#include "../config.h"
/* Some standard headers. */
#include <float.h>
#include <limits.h>
#include <sched.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
/* MPI headers. */
#ifdef WITH_MPI
#include <mpi.h>
/* METIS headers only used when MPI is also available. */
#ifdef HAVE_METIS
#include <metis.h>
#endif
#endif
/* This object's header. */
#include "engine.h"
/* Local headers. */
#include "atomic.h"
#include "cell.h"
#include "cycle.h"
#include "debug.h"
#include "error.h"
#include "timers.h"
#ifdef LEGACY_GADGET2_SPH
#include "runner_iact_legacy.h"
#else
#include "runner_iact.h"
#endif
/* Convert cell location to ID. */
#define cell_getid(cdim, i, j, k) \
((int)(k) + (cdim)[2] * ((int)(j) + (cdim)[1] * (int)(i)))
/** The rank of the engine as a global variable (for messages). */
int engine_rank;
/**
* @brief Link a density/force task to a cell.
*
* @param e The #engine.
* @param l The #link.
* @param t The #task.
*
* @return The new #link pointer.
*/
struct link *engine_addlink(struct engine *e, struct link *l, struct task *t) {
struct link *res = &e->links[atomic_inc(&e->nr_links)];
res->next = l;
res->t = t;
return res;
}
/**
* @brief Generate the ghost and kick tasks for a hierarchy of cells.
*
* @param e The #engine.
* @param c The #cell.
* @param super The super #cell.
*/
void engine_mkghosts(struct engine *e, struct cell *c, struct cell *super) {
int k;
struct scheduler *s = &e->sched;
/* Am I the super-cell? */
if (super == NULL && c->nr_tasks > 0) {
/* Remember me. */
super = c;
/* Local tasks only... */
if (c->nodeID == e->nodeID) {
/* Generate the ghost task. */
c->ghost = scheduler_addtask(s, task_type_ghost, task_subtype_none, 0, 0,
c, NULL, 0);
/* Add the kick2 task. */
c->kick2 = scheduler_addtask(s, task_type_kick2, task_subtype_none, 0, 0,
c, NULL, 0);
/* Add the kick1 task if needed. */
if (!(e->policy & engine_policy_fixdt))
c->kick1 = scheduler_addtask(s, task_type_kick1, task_subtype_none, 0,
0, c, NULL, 0);
}
}
/* Set the super-cell. */
c->super = super;
/* Recurse. */
if (c->split)
for (k = 0; k < 8; k++)
if (c->progeny[k] != NULL) engine_mkghosts(e, c->progeny[k], super);
}
/**
* @brief Redistribute the particles amongst the nodes accorind
* to their cell's node IDs.
*
* @param e The #engine.
*/
void engine_redistribute(struct engine *e) {
#ifdef WITH_MPI
int nr_nodes = e->nr_nodes, nodeID = e->nodeID;
struct space *s = e->s;
int my_cells = 0;
int *cdim = s->cdim;
struct cell *cells = s->cells;
int nr_cells = s->nr_cells;
/* Start by sorting the particles according to their nodes and
getting the counts. The counts array is indexed as
count[from * nr_nodes + to]. */
int *counts, *dest;
double ih[3], dim[3];
ih[0] = s->ih[0];
ih[1] = s->ih[1];
ih[2] = s->ih[2];
dim[0] = s->dim[0];
dim[1] = s->dim[1];
dim[2] = s->dim[2];
if ((counts = (int *)malloc(sizeof(int) *nr_nodes *nr_nodes)) == NULL ||
(dest = (int *)malloc(sizeof(int) * s->nr_parts)) == NULL)
error("Failed to allocate count and dest buffers.");
bzero(counts, sizeof(int) * nr_nodes * nr_nodes);
struct part *parts = s->parts;
for (int k = 0; k < s->nr_parts; k++) {
for (int j = 0; j < 3; j++) {
if (parts[k].x[j] < 0.0)
parts[k].x[j] += dim[j];
else if (parts[k].x[j] >= dim[j])
parts[k].x[j] -= dim[j];
}
const int cid = cell_getid(cdim, parts[k].x[0] * ih[0],
parts[k].x[1] * ih[1], parts[k].x[2] * ih[2]);
dest[k] = cells[cid].nodeID;
counts[nodeID * nr_nodes + dest[k]] += 1;
}
parts_sort(s->parts, s->xparts, dest, s->nr_parts, 0, nr_nodes - 1);
/* Get all the counts from all the nodes. */
if (MPI_Allreduce(MPI_IN_PLACE, counts, nr_nodes * nr_nodes, MPI_INT, MPI_SUM,
MPI_COMM_WORLD) != MPI_SUCCESS)
error("Failed to allreduce particle transfer counts.");
/* Get the new number of parts for this node, be generous in allocating. */
int nr_parts = 0;
for (int k = 0; k < nr_nodes; k++) nr_parts += counts[k * nr_nodes + nodeID];
struct part *parts_new;
struct xpart *xparts_new, *xparts = s->xparts;
if (posix_memalign((void **)&parts_new, part_align,
sizeof(struct part) * nr_parts * 1.2) != 0 ||
posix_memalign((void **)&xparts_new, part_align,
sizeof(struct xpart) * nr_parts * 1.2) != 0)
error("Failed to allocate new part data.");
/* Emit the sends and recvs for the particle data. */
MPI_Request *reqs;
if ((reqs = (MPI_Request *)malloc(sizeof(MPI_Request) * 4 * nr_nodes)) ==
NULL)
error("Failed to allocate MPI request list.");
for (int k = 0; k < 4 * nr_nodes; k++) reqs[k] = MPI_REQUEST_NULL;
for (int offset_send = 0, offset_recv = 0, k = 0; k < nr_nodes; k++) {
int ind_send = nodeID * nr_nodes + k;
int ind_recv = k * nr_nodes + nodeID;
if (counts[ind_send] > 0) {
if (k == nodeID) {
memcpy(&parts_new[offset_recv], &s->parts[offset_send],
sizeof(struct part) * counts[ind_recv]);
memcpy(&xparts_new[offset_recv], &s->xparts[offset_send],
sizeof(struct xpart) * counts[ind_recv]);
offset_send += counts[ind_send];
offset_recv += counts[ind_recv];
} else {
if (MPI_Isend(&s->parts[offset_send],
sizeof(struct part) * counts[ind_send], MPI_BYTE, k,
2 * ind_send + 0, MPI_COMM_WORLD,
&reqs[4 * k]) != MPI_SUCCESS)
error("Failed to isend parts to node %i.", k);
if (MPI_Isend(&s->xparts[offset_send],
sizeof(struct xpart) * counts[ind_send], MPI_BYTE, k,
2 * ind_send + 1, MPI_COMM_WORLD,
&reqs[4 * k + 1]) != MPI_SUCCESS)
error("Failed to isend xparts to node %i.", k);
offset_send += counts[ind_send];
}
}
if (k != nodeID && counts[ind_recv] > 0) {
if (MPI_Irecv(&parts_new[offset_recv],
sizeof(struct part) * counts[ind_recv], MPI_BYTE, k,
2 * ind_recv + 0, MPI_COMM_WORLD,
&reqs[4 * k + 2]) != MPI_SUCCESS)
error("Failed to emit irecv of parts from node %i.", k);
if (MPI_Irecv(&xparts_new[offset_recv],
sizeof(struct xpart) * counts[ind_recv], MPI_BYTE, k,
2 * ind_recv + 1, MPI_COMM_WORLD,
&reqs[4 * k + 3]) != MPI_SUCCESS)
error("Failed to emit irecv of parts from node %i.", k);
offset_recv += counts[ind_recv];
}
}
/* Wait for all the sends and recvs to tumble in. */
MPI_Status stats[4 * nr_nodes];
int res;
if ((res = MPI_Waitall(4 * nr_nodes, reqs, stats)) != MPI_SUCCESS) {
for (int k = 0; k < 4 * nr_nodes; k++) {
char buff[MPI_MAX_ERROR_STRING];
int res;
MPI_Error_string(stats[k].MPI_ERROR, buff, &res);
message("request %i has error '%s'.", k, buff);
}
error("Failed during waitall for part data.");
}
/* Verify that all parts are in the right place. */
/* for ( k = 0 ; k < nr_parts ; k++ ) {
cid = cell_getid( cdim , parts_new[k].x[0]*ih[0] , parts_new[k].x[1]*ih[1]
, parts_new[k].x[2]*ih[2] );
if ( cells[ cid ].nodeID != nodeID )
error( "Received particle (%i) that does not belong here (nodeID=%i)."
, k , cells[ cid ].nodeID );
} */
/* Set the new part data, free the old. */
free(parts);
free(xparts);
s->parts = parts_new;
s->xparts = xparts_new;
s->nr_parts = nr_parts;
s->size_parts = 1.2 * nr_parts;
/* Be verbose about what just happened. */
for (int k = 0; k < nr_cells; k++)
if (cells[k].nodeID == nodeID) my_cells += 1;
message("node %i now has %i parts in %i cells.", nodeID, nr_parts, my_cells);
/* Clean up other stuff. */
free(reqs);
free(counts);
free(dest);
#else
error("SWIFT was not compiled with MPI and METIS support.");
#endif
}
/**
* @brief Repartition the cells amongst the nodes.
*
* @param e The #engine.
*/
void engine_repartition(struct engine *e) {
#if defined(WITH_MPI) && defined(HAVE_METIS)
int i, j, k, l, cid, cjd, ii, jj, kk, res;
idx_t *inds, *nodeIDs;
idx_t *weights_v = NULL, *weights_e = NULL;
struct space *s = e->s;
int nr_cells = s->nr_cells, my_cells = 0;
struct cell *cells = s->cells;
int ind[3], *cdim = s->cdim;
struct task *t, *tasks = e->sched.tasks;
struct cell *ci, *cj;
int nr_nodes = e->nr_nodes, nodeID = e->nodeID;
float wscale = 1e-3, vscale = 1e-3, wscale_buff;
idx_t wtot = 0;
const idx_t wmax = 1e9 / e->nr_nodes;
/* Clear the repartition flag. */
e->forcerepart = 0;
/* Allocate the inds and weights. */
if ((inds = (idx_t *)malloc(sizeof(idx_t) * 26 *nr_cells)) == NULL ||
(weights_v = (idx_t *)malloc(sizeof(idx_t) *nr_cells)) == NULL ||
(weights_e = (idx_t *)malloc(sizeof(idx_t) * 26 *nr_cells)) == NULL ||
(nodeIDs = (idx_t *)malloc(sizeof(idx_t) * nr_cells)) == NULL)
error("Failed to allocate inds and weights arrays.");
/* Fill the inds array. */
for (cid = 0; cid < nr_cells; cid++) {
ind[0] = cells[cid].loc[0] / s->cells[cid].h[0] + 0.5;
ind[1] = cells[cid].loc[1] / s->cells[cid].h[1] + 0.5;
ind[2] = cells[cid].loc[2] / s->cells[cid].h[2] + 0.5;
l = 0;
for (i = -1; i <= 1; i++) {
ii = ind[0] + i;
if (ii < 0)
ii += cdim[0];
else if (ii >= cdim[0])
ii -= cdim[0];
for (j = -1; j <= 1; j++) {
jj = ind[1] + j;
if (jj < 0)
jj += cdim[1];
else if (jj >= cdim[1])
jj -= cdim[1];
for (k = -1; k <= 1; k++) {
kk = ind[2] + k;
if (kk < 0)
kk += cdim[2];
else if (kk >= cdim[2])
kk -= cdim[2];
if (i || j || k) {
inds[cid * 26 + l] = cell_getid(cdim, ii, jj, kk);
l += 1;
}
}
}
}
}
/* Init the weights arrays. */
bzero(weights_e, sizeof(idx_t) * 26 * nr_cells);
bzero(weights_v, sizeof(idx_t) * nr_cells);
/* Loop over the tasks... */
for (j = 0; j < e->sched.nr_tasks; j++) {
/* Get a pointer to the kth task. */
t = &tasks[j];
/* Skip un-interesting tasks. */
if (t->type != task_type_self && t->type != task_type_pair &&
t->type != task_type_sub && t->type != task_type_ghost &&
t->type != task_type_kick1 && t->type != task_type_kick2)
continue;
/* Get the task weight. */
idx_t w = (t->toc - t->tic) * wscale;
if (w < 0) error("Bad task weight (%" SCIDX ").", w);
/* Do we need to re-scale? */
wtot += w;
while (wtot > wmax) {
wscale /= 2;
wtot /= 2;
w /= 2;
for (k = 0; k < 26 * nr_cells; k++) weights_e[k] *= 0.5;
for (k = 0; k < nr_cells; k++) weights_v[k] *= 0.5;
}
/* Get the top-level cells involved. */
for (ci = t->ci; ci->parent != NULL; ci = ci->parent)
;
if (t->cj != NULL)
for (cj = t->cj; cj->parent != NULL; cj = cj->parent)
;
else
cj = NULL;
/* Get the cell IDs. */
cid = ci - cells;
/* Different weights for different tasks. */
if (t->type == task_type_ghost || t->type == task_type_kick1 ||
t->type == task_type_kick2) {
/* Particle updates add only to vertex weight. */
weights_v[cid] += w;
}
/* Self interaction? */
else if ((t->type == task_type_self && ci->nodeID == nodeID) ||
(t->type == task_type_sub && cj == NULL && ci->nodeID == nodeID)) {
/* Self interactions add only to vertex weight. */
weights_v[cid] += w;
}
/* Pair? */
else if (t->type == task_type_pair ||
(t->type == task_type_sub && cj != NULL)) {
/* In-cell pair? */
if (ci == cj) {
/* Add weight to vertex for ci. */
weights_v[cid] += w;
}
/* Distinct cells with local ci? */
else if (ci->nodeID == nodeID) {
/* Index of the jth cell. */
cjd = cj - cells;
/* Add half of weight to each cell. */
if (ci->nodeID == nodeID) weights_v[cid] += 0.5 * w;
if (cj->nodeID == nodeID) weights_v[cjd] += 0.5 * w;
/* Add Weight to edge. */
for (k = 26 * cid; inds[k] != cjd; k++)
;
weights_e[k] += w;
for (k = 26 * cjd; inds[k] != cid; k++)
;
weights_e[k] += w;
}
}
}
/* Get the minimum scaling and re-scale if necessary. */
if ((res = MPI_Allreduce(&wscale, &wscale_buff, 1, MPI_FLOAT, MPI_MIN,
MPI_COMM_WORLD)) != MPI_SUCCESS) {
char buff[MPI_MAX_ERROR_STRING];
MPI_Error_string(res, buff, &i);
error("Failed to allreduce the weight scales (%s).", buff);
}
if (wscale_buff != wscale) {
float scale = wscale_buff / wscale;
for (k = 0; k < 26 * nr_cells; k++) weights_e[k] *= scale;
for (k = 0; k < nr_cells; k++) weights_v[k] *= scale;
}
/* Merge the weights arrays accross all nodes. */
#if IDXTYPEWIDTH == 32
if ((res = MPI_Reduce((nodeID == 0) ? MPI_IN_PLACE : weights_v, weights_v,
nr_cells, MPI_INT, MPI_SUM, 0, MPI_COMM_WORLD)) !=
MPI_SUCCESS) {
#else
if ((res = MPI_Reduce((nodeID == 0) ? MPI_IN_PLACE : weights_v, weights_v,
nr_cells, MPI_LONG_LONG_INT, MPI_SUM, 0,
MPI_COMM_WORLD)) != MPI_SUCCESS) {
#endif
char buff[MPI_MAX_ERROR_STRING];
MPI_Error_string(res, buff, &i);
error("Failed to allreduce vertex weights (%s).", buff);
}
#if IDXTYPEWIDTH == 32
if (MPI_Reduce((nodeID == 0) ? MPI_IN_PLACE : weights_e, weights_e,
26 * nr_cells, MPI_INT, MPI_SUM, 0,
MPI_COMM_WORLD) != MPI_SUCCESS)
#else
if (MPI_Reduce((nodeID == 0) ? MPI_IN_PLACE : weights_e, weights_e,
26 * nr_cells, MPI_LONG_LONG_INT, MPI_SUM, 0,
MPI_COMM_WORLD) != MPI_SUCCESS)
#endif
error("Failed to allreduce edge weights.");
/* As of here, only one node needs to compute the partition. */
if (nodeID == 0) {
/* Check that the edge weights are fully symmetric. */
/* for ( cid = 0 ; cid < nr_cells ; cid++ )
for ( k = 0 ; k < 26 ; k++ ) {
cjd = inds[ cid*26 + k ];
for ( j = 26*cjd ; inds[j] != cid ; j++ );
if ( weights_e[ cid*26+k ] != weights_e[ j ] )
error( "Unsymmetric edge weights detected (%i vs %i)." ,
weights_e[ cid*26+k ] , weights_e[ j ] );
} */
/* int w_min = weights_e[0], w_max = weights_e[0], w_tot = weights_e[0];
for ( k = 1 ; k < 26*nr_cells ; k++ ) {
w_tot += weights_e[k];
if ( weights_e[k] < w_min )
w_min = weights_e[k];
else if ( weights_e[k] > w_max )
w_max = weights_e[k];
}
message( "edge weights in [ %i , %i ], tot=%i." , w_min , w_max , w_tot );
w_min = weights_e[0], w_max = weights_e[0]; w_tot = weights_v[0];
for ( k = 1 ; k < nr_cells ; k++ ) {
w_tot += weights_v[k];
if ( weights_v[k] < w_min )
w_min = weights_v[k];
else if ( weights_v[k] > w_max )
w_max = weights_v[k];
}
message( "vertex weights in [ %i , %i ], tot=%i." , w_min , w_max , w_tot );
*/
/* Make sure there are no zero weights. */
for (k = 0; k < 26 * nr_cells; k++)
if (weights_e[k] == 0) weights_e[k] = 1;
for (k = 0; k < nr_cells; k++)
if ((weights_v[k] *= vscale) == 0) weights_v[k] = 1;
/* Allocate and fill the connection array. */
idx_t *offsets;
if ((offsets = (idx_t *)malloc(sizeof(idx_t) * (nr_cells + 1))) == NULL)
error("Failed to allocate offsets buffer.");
offsets[0] = 0;
for (k = 0; k < nr_cells; k++) offsets[k + 1] = offsets[k] + 26;
/* Set the METIS options. +1 to keep the GCC sanitizer happy. */
idx_t options[METIS_NOPTIONS + 1];
METIS_SetDefaultOptions(options);
options[METIS_OPTION_OBJTYPE] = METIS_OBJTYPE_CUT;
options[METIS_OPTION_NUMBERING] = 0;
options[METIS_OPTION_CONTIG] = 1;
options[METIS_OPTION_NCUTS] = 10;
options[METIS_OPTION_NITER] = 20;
// options[ METIS_OPTION_UFACTOR ] = 1;
/* Set the initial partition, although this is probably ignored. */
for (k = 0; k < nr_cells; k++) nodeIDs[k] = cells[k].nodeID;
/* Call METIS. */
idx_t one = 1, idx_nr_cells = nr_cells, idx_nr_nodes = nr_nodes;
idx_t objval;
if (METIS_PartGraphRecursive(&idx_nr_cells, &one, offsets, inds, weights_v,
NULL, weights_e, &idx_nr_nodes, NULL, NULL,
options, &objval, nodeIDs) != METIS_OK)
error("Call to METIS_PartGraphKway failed.");
/* Dump the 3d array of cell IDs. */
/* printf( "engine_repartition: nodeIDs = reshape( [" );
for ( i = 0 ; i < cdim[0]*cdim[1]*cdim[2] ; i++ )
printf( "%i " , (int)nodeIDs[ i ] );
printf("] ,%i,%i,%i);\n",cdim[0],cdim[1],cdim[2]); */
}
/* Broadcast the result of the partition. */
#if IDXTYPEWIDTH == 32
if (MPI_Bcast(nodeIDs, nr_cells, MPI_INT, 0, MPI_COMM_WORLD) != MPI_SUCCESS)
error("Failed to bcast the node IDs.");
#else
if (MPI_Bcast(nodeIDs, nr_cells, MPI_LONG_LONG_INT, 0, MPI_COMM_WORLD) !=
MPI_SUCCESS)
error("Failed to bcast the node IDs.");
#endif
/* Set the cell nodeIDs and clear any non-local parts. */
for (k = 0; k < nr_cells; k++) {
cells[k].nodeID = nodeIDs[k];
if (nodeIDs[k] == nodeID) my_cells += 1;
}
/* Clean up. */
free(inds);
free(weights_v);
free(weights_e);
free(nodeIDs);
/* Now comes the tricky part: Exchange particles between all nodes.
This is done in two steps, first allreducing a matrix of
how many particles go from where to where, then re-allocating
the parts array, and emiting the sends and receives.
Finally, the space, tasks, and proxies need to be rebuilt. */
/* Redistribute the particles between the nodes. */
engine_redistribute(e);
/* Make the proxies. */
engine_makeproxies(e);
/* Tell the engine it should re-build whenever possible */
e->forcerebuild = 1;
#else
error("SWIFT was not compiled with MPI and METIS support.");
#endif
}
/**
* @brief Add up/down gravity tasks to a cell hierarchy.
*
* @param e The #engine.
* @param c The #cell
* @param up The upward gravity #task.
* @param down The downward gravity #task.
*/
void engine_addtasks_grav(struct engine *e, struct cell *c, struct task *up,
struct task *down) {
/* Link the tasks to this cell. */
c->grav_up = up;
c->grav_down = down;
/* Recurse? */
if (c->split)
for (int k = 0; k < 8; k++)
if (c->progeny[k] != NULL)
engine_addtasks_grav(e, c->progeny[k], up, down);
}
/**
* @brief Add send tasks to a hierarchy of cells.
*
* @param e The #engine.
* @param ci The sending #cell.
* @param cj The receiving #cell
*/
void engine_addtasks_send(struct engine *e, struct cell *ci, struct cell *cj) {
int k;
struct link *l = NULL;
struct scheduler *s = &e->sched;
/* Check if any of the density tasks are for the target node. */
for (l = ci->density; l != NULL; l = l->next)
if (l->t->ci->nodeID == cj->nodeID ||
(l->t->cj != NULL && l->t->cj->nodeID == cj->nodeID))
break;
/* If so, attach send tasks. */
if (l != NULL) {
/* Create the tasks. */
struct task *t_xv =
scheduler_addtask(&e->sched, task_type_send, task_subtype_none,
2 * ci->tag, 0, ci, cj, 0);
struct task *t_rho =
scheduler_addtask(&e->sched, task_type_send, task_subtype_none,
2 * ci->tag + 1, 0, ci, cj, 0);
/* The send_rho task depends on the cell's ghost task. */
scheduler_addunlock(s, ci->super->ghost, t_rho);
/* The send_rho task should unlock the super-cell's kick2 task. */
scheduler_addunlock(s, t_rho, ci->super->kick2);
/* The send_xv task should unlock the super-cell's ghost task. */
scheduler_addunlock(s, t_xv, ci->super->ghost);
}
/* Recurse? */
else if (ci->split)
for (k = 0; k < 8; k++)
if (ci->progeny[k] != NULL) engine_addtasks_send(e, ci->progeny[k], cj);
}
/**
* @brief Add recv tasks to a hierarchy of cells.
*
* @param e The #engine.
* @param c The #cell.
* @param t_xv The recv_xv #task, if it has already been created.
* @param t_rho The recv_rho #task, if it has already been created.
*/
void engine_addtasks_recv(struct engine *e, struct cell *c, struct task *t_xv,
struct task *t_rho) {
int k;
struct scheduler *s = &e->sched;
/* Do we need to construct a recv task? */
if (t_xv == NULL && c->nr_density > 0) {
/* Create the tasks. */
t_xv = c->recv_xv =
scheduler_addtask(&e->sched, task_type_recv, task_subtype_none,
2 * c->tag, 0, c, NULL, 0);
t_rho = c->recv_rho =
scheduler_addtask(&e->sched, task_type_recv, task_subtype_none,
2 * c->tag + 1, 0, c, NULL, 0);
}
/* Add dependencies. */
for (struct link *l = c->density; l != NULL; l = l->next) {
scheduler_addunlock(s, t_xv, l->t);
scheduler_addunlock(s, l->t, t_rho);
}
for (struct link *l = c->force; l != NULL; l = l->next)
scheduler_addunlock(s, t_rho, l->t);
if (c->sorts != NULL) scheduler_addunlock(s, t_xv, c->sorts);
/* Recurse? */
if (c->split)
for (k = 0; k < 8; k++)
if (c->progeny[k] != NULL)
engine_addtasks_recv(e, c->progeny[k], t_xv, t_rho);
}
/**
* @brief Exchange cell structures with other nodes.
*
* @param e The #engine.
*/
void engine_exchange_cells(struct engine *e) {
#ifdef WITH_MPI
int j, k, pid, count = 0;
struct pcell *pcells;
struct space *s = e->s;
struct cell *cells = s->cells;
int nr_cells = s->nr_cells;
int nr_proxies = e->nr_proxies;
int offset[nr_cells];
MPI_Request reqs_in[engine_maxproxies];
MPI_Request reqs_out[engine_maxproxies];
MPI_Status status;
/* Run through the cells and get the size of the ones that will be sent off.
*/
for (k = 0; k < nr_cells; k++) {
offset[k] = count;
if (cells[k].sendto)
count += (cells[k].pcell_size = cell_getsize(&cells[k]));
}
/* Allocate the pcells. */
if ((pcells = (struct pcell *)malloc(sizeof(struct pcell) * count)) == NULL)
error("Failed to allocate pcell buffer.");
/* Pack the cells. */
cell_next_tag = 0;
for (k = 0; k < nr_cells; k++)
if (cells[k].sendto) {
cell_pack(&cells[k], &pcells[offset[k]]);
cells[k].pcell = &pcells[offset[k]];
}
/* Launch the proxies. */
for (k = 0; k < nr_proxies; k++) {
proxy_cells_exch1(&e->proxies[k]);
reqs_in[k] = e->proxies[k].req_cells_count_in;
reqs_out[k] = e->proxies[k].req_cells_count_out;
}
/* Wait for each count to come in and start the recv. */
for (k = 0; k < nr_proxies; k++) {
if (MPI_Waitany(nr_proxies, reqs_in, &pid, &status) != MPI_SUCCESS ||
pid == MPI_UNDEFINED)
error("MPI_Waitany failed.");
// message( "request from proxy %i has arrived." , pid );
proxy_cells_exch2(&e->proxies[pid]);
}
/* Wait for all the sends to have finnished too. */
if (MPI_Waitall(nr_proxies, reqs_out, MPI_STATUSES_IGNORE) != MPI_SUCCESS)
error("MPI_Waitall on sends failed.");
/* Set the requests for the cells. */
for (k = 0; k < nr_proxies; k++) {
reqs_in[k] = e->proxies[k].req_cells_in;
reqs_out[k] = e->proxies[k].req_cells_out;
}
/* Wait for each pcell array to come in from the proxies. */
for (k = 0; k < nr_proxies; k++) {
if (MPI_Waitany(nr_proxies, reqs_in, &pid, &status) != MPI_SUCCESS ||
pid == MPI_UNDEFINED)
error("MPI_Waitany failed.");
// message( "cell data from proxy %i has arrived." , pid );
for (count = 0, j = 0; j < e->proxies[pid].nr_cells_in; j++)
count += cell_unpack(&e->proxies[pid].pcells_in[count],
e->proxies[pid].cells_in[j], e->s);
}
/* Wait for all the sends to have finnished too. */
if (MPI_Waitall(nr_proxies, reqs_out, MPI_STATUSES_IGNORE) != MPI_SUCCESS)
error("MPI_Waitall on sends failed.");
/* Count the number of particles we need to import and re-allocate
the buffer if needed. */
for (count = 0, k = 0; k < nr_proxies; k++)
for (j = 0; j < e->proxies[k].nr_cells_in; j++)
count += e->proxies[k].cells_in[j]->count;
if (count > s->size_parts_foreign) {
if (s->parts_foreign != NULL) free(s->parts_foreign);
s->size_parts_foreign = 1.1 * count;
if (posix_memalign((void **)&s->parts_foreign, part_align,
sizeof(struct part) * s->size_parts_foreign) != 0)
error("Failed to allocate foreign part data.");
}
/* Unpack the cells and link to the particle data. */
struct part *parts = s->parts_foreign;
for (k = 0; k < nr_proxies; k++) {
for (count = 0, j = 0; j < e->proxies[k].nr_cells_in; j++) {
count += cell_link(e->proxies[k].cells_in[j], parts);
parts = &parts[e->proxies[k].cells_in[j]->count];
}
}
s->nr_parts_foreign = parts - s->parts_foreign;
/* Is the parts buffer large enough? */
if (s->nr_parts_foreign > s->size_parts_foreign)
error("Foreign parts buffer too small.");
/* Free the pcell buffer. */
free(pcells);
#else
error("SWIFT was not compiled with MPI support.");
#endif
}
/**
* @brief Exchange straying parts with other nodes.
*
* @param e The #engine.
* @param offset The index in the parts array as of which the foreign parts
*reside.
* @param ind The ID of the foreign #cell.
* @param N The number of stray parts.
*
* @return The number of arrived parts copied to parts and xparts.
*/
int engine_exchange_strays(struct engine *e, int offset, int *ind, int N) {
#ifdef WITH_MPI
int k, pid, count = 0, nr_in = 0, nr_out = 0;
MPI_Request reqs_in[2 * engine_maxproxies];
MPI_Request reqs_out[2 * engine_maxproxies];
MPI_Status status;
struct proxy *p;
struct space *s = e->s;
/* Re-set the proxies. */
for (k = 0; k < e->nr_proxies; k++) e->proxies[k].nr_parts_out = 0;
/* Put the parts into the corresponding proxies. */
for (k = 0; k < N; k++) {
int node_id = e->s->cells[ind[k]].nodeID;
if (node_id < 0 || node_id >= e->nr_nodes)
error("Bad node ID %i.", node_id);
pid = e->proxy_ind[node_id];
if (pid < 0)
error(
"Do not have a proxy for the requested nodeID %i for part with "
"id=%llu, x=[%e,%e,%e].",
node_id, s->parts[offset + k].id, s->parts[offset + k].x[0],
s->parts[offset + k].x[1], s->parts[offset + k].x[2]);
proxy_parts_load(&e->proxies[pid], &s->parts[offset + k],
&s->xparts[offset + k], 1);
}
/* Launch the proxies. */
for (k = 0; k < e->nr_proxies; k++) {
proxy_parts_exch1(&e->proxies[k]);
reqs_in[k] = e->proxies[k].req_parts_count_in;
reqs_out[k] = e->proxies[k].req_parts_count_out;
}
/* Wait for each count to come in and start the recv. */
for (k = 0; k < e->nr_proxies; k++) {
if (MPI_Waitany(e->nr_proxies, reqs_in, &pid, &status) != MPI_SUCCESS ||
pid == MPI_UNDEFINED)
error("MPI_Waitany failed.");
// message( "request from proxy %i has arrived." , pid );
proxy_parts_exch2(&e->proxies[pid]);
}
/* Wait for all the sends to have finnished too. */
if (MPI_Waitall(e->nr_proxies, reqs_out, MPI_STATUSES_IGNORE) != MPI_SUCCESS)
error("MPI_Waitall on sends failed.");
/* Count the total number of incomming particles and make sure we have
enough space to accommodate them. */
int count_in = 0;
for (k = 0; k < e->nr_proxies; k++) count_in += e->proxies[k].nr_parts_in;
message("sent out %i particles, got %i back.", N, count_in);
if (offset + count_in > s->size_parts) {
s->size_parts = (offset + count_in) * 1.05;
struct part *parts_new;
struct xpart *xparts_new;
if (posix_memalign((void **)&parts_new, part_align,
sizeof(struct part) * s->size_parts) != 0 ||
posix_memalign((void **)&xparts_new, part_align,
sizeof(struct xpart) * s->size_parts) != 0)
error("Failed to allocate new part data.");
memcpy(parts_new, s->parts, sizeof(struct part) * offset);
memcpy(xparts_new, s->xparts, sizeof(struct xpart) * offset);
free(s->parts);
free(s->xparts);
s->parts = parts_new;
s->xparts = xparts_new;
}
/* Collect the requests for the particle data from the proxies. */
for (k = 0; k < e->nr_proxies; k++) {
if (e->proxies[k].nr_parts_in > 0) {
reqs_in[2 * k] = e->proxies[k].req_parts_in;
reqs_in[2 * k + 1] = e->proxies[k].req_xparts_in;
nr_in += 1;
} else
reqs_in[2 * k] = reqs_in[2 * k + 1] = MPI_REQUEST_NULL;
if (e->proxies[k].nr_parts_out > 0) {
reqs_out[2 * k] = e->proxies[k].req_parts_out;
reqs_out[2 * k + 1] = e->proxies[k].req_xparts_out;
nr_out += 1;
} else
reqs_out[2 * k] = reqs_out[2 * k + 1] = MPI_REQUEST_NULL;
}
/* Wait for each part array to come in and collect the new
parts from the proxies. */
for (k = 0; k < 2 * (nr_in + nr_out); k++) {
int err;
if ((err = MPI_Waitany(2 * e->nr_proxies, reqs_in, &pid, &status)) !=
MPI_SUCCESS) {
char buff[MPI_MAX_ERROR_STRING];
int res;
MPI_Error_string(err, buff, &res);
error("MPI_Waitany failed (%s).", buff);
}
if (pid == MPI_UNDEFINED) break;
// message( "request from proxy %i has arrived." , pid );
if (reqs_in[pid & ~1] == MPI_REQUEST_NULL &&
reqs_in[pid | 1] == MPI_REQUEST_NULL) {
p = &e->proxies[pid >> 1];
memcpy(&s->parts[offset + count], p->parts_in,
sizeof(struct part) * p->nr_parts_in);
memcpy(&s->xparts[offset + count], p->xparts_in,
sizeof(struct xpart) * p->nr_parts_in);
/* for (int k = offset; k < offset + count; k++)
message(
"received particle %lli, x=[%.3e %.3e %.3e], h=%.3e, from node %i.",
s->parts[k].id, s->parts[k].x[0], s->parts[k].x[1],
s->parts[k].x[2], s->parts[k].h, p->nodeID); */
count += p->nr_parts_in;
}
}
/* Wait for all the sends to have finnished too. */
if (nr_out > 0)
if (MPI_Waitall(2 * e->nr_proxies, reqs_out, MPI_STATUSES_IGNORE) !=
MPI_SUCCESS)
error("MPI_Waitall on sends failed.");
/* Return the number of harvested parts. */
return count;
#else
error("SWIFT was not compiled with MPI support.");
return 0;
#endif
}
/**
* @brief Fill the #space's task list.
*
* @param e The #engine we are working with.
*/
void engine_maketasks(struct engine *e) {
struct space *s = e->s;
struct scheduler *sched = &e->sched;
struct cell *cells = s->cells;
int nr_cells = s->nr_cells;
int nodeID = e->nodeID;
int i, j, k, ii, jj, kk, iii, jjj, kkk, cid, cjd, sid;
int *cdim = s->cdim;
struct task *t, *t2;
struct cell *ci, *cj;
/* Re-set the scheduler. */
scheduler_reset(sched, s->tot_cells * engine_maxtaskspercell);
/* Run through the highest level of cells and add pairs. */
for (i = 0; i < cdim[0]; i++)
for (j = 0; j < cdim[1]; j++)
for (k = 0; k < cdim[2]; k++) {
cid = cell_getid(cdim, i, j, k);
if (cells[cid].count == 0) continue;
ci = &cells[cid];
if (ci->count == 0) continue;
if (ci->nodeID == nodeID)
scheduler_addtask(sched, task_type_self, task_subtype_density, 0, 0,
ci, NULL, 0);
for (ii = -1; ii < 2; ii++) {
iii = i + ii;
if (!s->periodic && (iii < 0 || iii >= cdim[0])) continue;
iii = (iii + cdim[0]) % cdim[0];
for (jj = -1; jj < 2; jj++) {
jjj = j + jj;
if (!s->periodic && (jjj < 0 || jjj >= cdim[1])) continue;
jjj = (jjj + cdim[1]) % cdim[1];
for (kk = -1; kk < 2; kk++) {
kkk = k + kk;
if (!s->periodic && (kkk < 0 || kkk >= cdim[2])) continue;
kkk = (kkk + cdim[2]) % cdim[2];
cjd = cell_getid(cdim, iii, jjj, kkk);
cj = &cells[cjd];
if (cid >= cjd || cj->count == 0 ||
(ci->nodeID != nodeID && cj->nodeID != nodeID))
continue;
sid = sortlistID[(kk + 1) + 3 * ((jj + 1) + 3 * (ii + 1))];
scheduler_addtask(sched, task_type_pair, task_subtype_density,
sid, 0, ci, cj, 1);
}
}
}
}
/* Add the gravity mm tasks. */
for (i = 0; i < nr_cells; i++)
if (cells[i].gcount > 0) {
scheduler_addtask(sched, task_type_grav_mm, task_subtype_none, -1, 0,
&cells[i], NULL, 0);
for (j = i + 1; j < nr_cells; j++)
if (cells[j].gcount > 0)
scheduler_addtask(sched, task_type_grav_mm, task_subtype_none, -1, 0,
&cells[i], &cells[j], 0);
}
/* Split the tasks. */
scheduler_splittasks(sched);
/* Allocate the list of cell-task links. The maximum number of links
is the number of cells (s->tot_cells) times the number of neighbours (27)
times the number of interaction types (2, density and force). */
if (e->links != NULL) free(e->links);
if ((e->links = malloc(sizeof(struct link) * s->tot_cells * 27 * 2)) == NULL)
error("Failed to allocate cell-task links.");
e->nr_links = 0;
/* Add the gravity up/down tasks at the top-level cells and push them down. */
for (k = 0; k < nr_cells; k++)
if (cells[k].nodeID == nodeID && cells[k].gcount > 0) {
/* Create tasks at top level. */
struct task *up =
scheduler_addtask(sched, task_type_grav_up, task_subtype_none, 0, 0,
&cells[k], NULL, 0);
struct task *down =
scheduler_addtask(sched, task_type_grav_down, task_subtype_none, 0, 0,
&cells[k], NULL, 0);
/* Push tasks down the cell hierarchy. */
engine_addtasks_grav(e, &cells[k], up, down);
}
/* Count the number of tasks associated with each cell and
store the density tasks in each cell, and make each sort
depend on the sorts of its progeny. */
for (k = 0; k < sched->nr_tasks; k++) {
/* Get the current task. */
t = &sched->tasks[k];
if (t->skip) continue;
/* Link sort tasks together. */
if (t->type == task_type_sort && t->ci->split)
for (j = 0; j < 8; j++)
if (t->ci->progeny[j] != NULL && t->ci->progeny[j]->sorts != NULL) {
t->ci->progeny[j]->sorts->skip = 0;
scheduler_addunlock(sched, t->ci->progeny[j]->sorts, t);
}
/* Link density tasks to cells. */
if (t->type == task_type_self) {
atomic_inc(&t->ci->nr_tasks);
if (t->subtype == task_subtype_density) {
t->ci->density = engine_addlink(e, t->ci->density, t);
atomic_inc(&t->ci->nr_density);
}
} else if (t->type == task_type_pair) {
atomic_inc(&t->ci->nr_tasks);
atomic_inc(&t->cj->nr_tasks);
if (t->subtype == task_subtype_density) {
t->ci->density = engine_addlink(e, t->ci->density, t);
atomic_inc(&t->ci->nr_density);
t->cj->density = engine_addlink(e, t->cj->density, t);
atomic_inc(&t->cj->nr_density);
}
} else if (t->type == task_type_sub) {
atomic_inc(&t->ci->nr_tasks);
if (t->cj != NULL) atomic_inc(&t->cj->nr_tasks);
if (t->subtype == task_subtype_density) {
t->ci->density = engine_addlink(e, t->ci->density, t);
atomic_inc(&t->ci->nr_density);
if (t->cj != NULL) {
t->cj->density = engine_addlink(e, t->cj->density, t);
atomic_inc(&t->cj->nr_density);
}
}
}
/* Link gravity multipole tasks to the up/down tasks. */
if (t->type == task_type_grav_mm ||
(t->type == task_type_sub && t->subtype == task_subtype_grav)) {
atomic_inc(&t->ci->nr_tasks);
scheduler_addunlock(sched, t->ci->grav_up, t);
scheduler_addunlock(sched, t, t->ci->grav_down);
if (t->cj != NULL && t->ci->grav_up != t->cj->grav_up) {
scheduler_addunlock(sched, t->cj->grav_up, t);
scheduler_addunlock(sched, t, t->cj->grav_down);
}
}
}
/* Append a ghost task to each cell, and add kick2 tasks to the
super cells. */
for (k = 0; k < nr_cells; k++) engine_mkghosts(e, &cells[k], NULL);
/* Run through the tasks and make force tasks for each density task.
Each force task depends on the cell ghosts and unlocks the kick2 task
of its super-cell. */
kk = sched->nr_tasks;
for (k = 0; k < kk; k++) {
/* Get a pointer to the task. */
t = &sched->tasks[k];
/* Skip? */
if (t->skip) continue;
/* Self-interaction? */
if (t->type == task_type_self && t->subtype == task_subtype_density) {
scheduler_addunlock(sched, t, t->ci->super->ghost);
t2 = scheduler_addtask(sched, task_type_self, task_subtype_force, 0, 0,
t->ci, NULL, 0);
scheduler_addunlock(sched, t->ci->super->ghost, t2);
scheduler_addunlock(sched, t2, t->ci->super->kick2);
t->ci->force = engine_addlink(e, t->ci->force, t2);
atomic_inc(&t->ci->nr_force);
}
/* Otherwise, pair interaction? */
else if (t->type == task_type_pair && t->subtype == task_subtype_density) {
t2 = scheduler_addtask(sched, task_type_pair, task_subtype_force, 0, 0,
t->ci, t->cj, 0);
if (t->ci->nodeID == nodeID) {
scheduler_addunlock(sched, t, t->ci->super->ghost);
scheduler_addunlock(sched, t->ci->super->ghost, t2);
scheduler_addunlock(sched, t2, t->ci->super->kick2);
}
if (t->cj->nodeID == nodeID && t->ci->super != t->cj->super) {
scheduler_addunlock(sched, t, t->cj->super->ghost);
scheduler_addunlock(sched, t->cj->super->ghost, t2);
scheduler_addunlock(sched, t2, t->cj->super->kick2);
}
t->ci->force = engine_addlink(e, t->ci->force, t2);
atomic_inc(&t->ci->nr_force);
t->cj->force = engine_addlink(e, t->cj->force, t2);
atomic_inc(&t->cj->nr_force);
}
/* Otherwise, sub interaction? */
else if (t->type == task_type_sub && t->subtype == task_subtype_density) {
t2 = scheduler_addtask(sched, task_type_sub, task_subtype_force, t->flags,
0, t->ci, t->cj, 0);
if (t->ci->nodeID == nodeID) {
scheduler_addunlock(sched, t, t->ci->super->ghost);
scheduler_addunlock(sched, t->ci->super->ghost, t2);
scheduler_addunlock(sched, t2, t->ci->super->kick2);
}
if (t->cj != NULL && t->cj->nodeID == nodeID &&
t->ci->super != t->cj->super) {
scheduler_addunlock(sched, t, t->cj->super->ghost);
scheduler_addunlock(sched, t->cj->super->ghost, t2);
scheduler_addunlock(sched, t2, t->cj->super->kick2);
}
t->ci->force = engine_addlink(e, t->ci->force, t2);
atomic_inc(&t->ci->nr_force);
if (t->cj != NULL) {
t->cj->force = engine_addlink(e, t->cj->force, t2);
atomic_inc(&t->cj->nr_force);
}
}
/* Kick2 tasks should rely on the grav_down tasks of their cell. */
else if (t->type == task_type_kick2 && t->ci->grav_down != NULL)
scheduler_addunlock(sched, t->ci->grav_down, t);
}
/* Add the communication tasks if MPI is being used. */
#ifdef WITH_MPI
/* Loop over the proxies. */
for (int pid = 0; pid < e->nr_proxies; pid++) {
/* Get a handle on the proxy. */
struct proxy *p = &e->proxies[pid];
/* Loop through the proxy's incomming cells and add the
recv tasks. */
for (k = 0; k < p->nr_cells_in; k++)
engine_addtasks_recv(e, p->cells_in[k], NULL, NULL);
/* Loop through the proxy's outgoing cells and add the
send tasks. */
for (k = 0; k < p->nr_cells_out; k++)
engine_addtasks_send(e, p->cells_out[k], p->cells_in[0]);
}
#endif
/* Rank the tasks. */
scheduler_ranktasks(sched);
/* Weight the tasks. */
scheduler_reweight(sched);
/* Set the tasks age. */
e->tasks_age = 0;
}
/**
* @brief Mark tasks to be skipped and set the sort flags accordingly.
*
* @return 1 if the space has to be rebuilt, 0 otherwise.
*/
int engine_marktasks(struct engine *e) {
struct scheduler *s = &e->sched;
int k, nr_tasks = s->nr_tasks, *ind = s->tasks_ind;
struct task *t, *tasks = s->tasks;
float dt_step = e->dt_step;
struct cell *ci, *cj;
// ticks tic = getticks();
/* Muc less to do here if we're on a fixed time-step. */
if (!(e->policy & engine_policy_multistep)) {
/* Run through the tasks and mark as skip or not. */
for (k = 0; k < nr_tasks; k++) {
/* Get a handle on the kth task. */
t = &tasks[ind[k]];
/* Pair? */
if (t->type == task_type_pair ||
(t->type == task_type_sub && t->cj != NULL)) {
/* Local pointers. */
ci = t->ci;
cj = t->cj;
/* Too much particle movement? */
if (t->tight &&
(fmaxf(ci->h_max, cj->h_max) + ci->dx_max + cj->dx_max > cj->dmin ||
ci->dx_max > space_maxreldx * ci->h_max ||
cj->dx_max > space_maxreldx * cj->h_max))
return 1;
}
/* Sort? */
else if (t->type == task_type_sort) {
/* If all the sorts have been done, make this task implicit. */
if (!(t->flags & (t->flags ^ t->ci->sorted))) t->implicit = 1;
}
}
} else {
/* Run through the tasks and mark as skip or not. */
for (k = 0; k < nr_tasks; k++) {
/* Get a handle on the kth task. */
t = &tasks[ind[k]];
/* Sort-task? Note that due to the task ranking, the sorts
will all come before the pairs. */
if (t->type == task_type_sort) {
/* Re-set the flags. */
t->flags = 0;
t->skip = 1;
}
/* Single-cell task? */
else if (t->type == task_type_self || t->type == task_type_ghost ||
(t->type == task_type_sub && t->cj == NULL)) {
/* Set this task's skip. */
t->skip = (t->ci->dt_min > dt_step);
}
/* Pair? */
else if (t->type == task_type_pair ||
(t->type == task_type_sub && t->cj != NULL)) {
/* Local pointers. */
ci = t->ci;
cj = t->cj;
/* Set this task's skip. */
t->skip = (ci->dt_min > dt_step && cj->dt_min > dt_step);
/* Too much particle movement? */
if (t->tight &&
(fmaxf(ci->h_max, cj->h_max) + ci->dx_max + cj->dx_max > cj->dmin ||
ci->dx_max > space_maxreldx * ci->h_max ||
cj->dx_max > space_maxreldx * cj->h_max))
return 1;
/* Set the sort flags. */
if (!t->skip && t->type == task_type_pair) {
if (!(ci->sorted & (1 << t->flags))) {
ci->sorts->flags |= (1 << t->flags);
ci->sorts->skip = 0;
}
if (!(cj->sorted & (1 << t->flags))) {
cj->sorts->flags |= (1 << t->flags);
cj->sorts->skip = 0;
}
}
}
/* Kick2? */
else if (t->type == task_type_kick2)
t->skip = 0;
/* None? */
else if (t->type == task_type_none)
t->skip = 1;
}
}
// message( "took %.3f ms." , (double)(getticks() - tic)/CPU_TPS*1000 );
/* All is well... */
return 0;
}
/**
* @brief Rebuild the space and tasks.
*
* @param e The #engine.
*/
void engine_rebuild(struct engine *e) {
int k;
struct scheduler *sched = &e->sched;
/* Clear the forcerebuild flag, whatever it was. */
e->forcerebuild = 0;
/* Re-build the space. */
// tic = getticks();
space_rebuild(e->s, 0.0, e->nodeID == 0);
// message( "space_rebuild took %.3f ms." , (double)(getticks() -
// tic)/CPU_TPS*1000 );
/* If in parallel, exchange the cell structure. */
#ifdef WITH_MPI
// tic = getticks();
engine_exchange_cells(e);
// message( "engine_exchange_cells took %.3f ms." , (double)(getticks() -
// tic)/CPU_TPS*1000 );
#endif
/* Re-build the tasks. */
// tic = getticks();
engine_maketasks(e);
// message( "engine_maketasks took %.3f ms." , (double)(getticks() -
// tic)/CPU_TPS*1000 );
/* Run through the tasks and mark as skip or not. */
// tic = getticks();
if (engine_marktasks(e))
error("engine_marktasks failed after space_rebuild.");
// message( "engine_marktasks took %.3f ms." , (double)(getticks() -
// tic)/CPU_TPS*1000 );
/* Count and print the number of each task type. */
int counts[task_type_count + 1];
for (k = 0; k <= task_type_count; k++) counts[k] = 0;
for (k = 0; k < sched->nr_tasks; k++)
if (!sched->tasks[k].skip)
counts[(int)sched->tasks[k].type] += 1;
else
counts[task_type_count] += 1;
#ifdef WITH_MPI
printf("[%03i] engine_rebuild: task counts are [ %s=%i", e->nodeID,
taskID_names[0], counts[0]);
#else
printf("engine_rebuild: task counts are [ %s=%i", taskID_names[0], counts[0]);
#endif
for (k = 1; k < task_type_count; k++)
printf(" %s=%i", taskID_names[k], counts[k]);
printf(" skipped=%i ]\n", counts[task_type_count]);
fflush(stdout);
message("nr_parts = %i.", e->s->nr_parts);
}
/**
* @brief Prepare the #engine by re-building the cells and tasks.
*
* @param e The #engine to prepare.
*/
void engine_prepare(struct engine *e) {
int rebuild;
TIMER_TIC
/* Run through the tasks and mark as skip or not. */
// tic = getticks();
rebuild = (e->forcerebuild || engine_marktasks(e));
// message( "space_marktasks took %.3f ms." , (double)(getticks() -
// tic)/CPU_TPS*1000 );
/* Collect the values of rebuild from all nodes. */
#ifdef WITH_MPI
// tic = getticks();
int buff;
if (MPI_Allreduce(&rebuild, &buff, 1, MPI_INT, MPI_MAX, MPI_COMM_WORLD) !=
MPI_SUCCESS)
error("Failed to aggreggate the rebuild flag accross nodes.");
rebuild = buff;
// message( "rebuild allreduce took %.3f ms." , (double)(getticks() -
// tic)/CPU_TPS*1000 );
#endif
e->tic_step = getticks();
/* Did this not go through? */
if (rebuild) {
// tic = getticks();
engine_rebuild(e);
// message( "engine_rebuild took %.3f ms." , (double)(getticks() -
// tic)/CPU_TPS*1000 );
}
/* Re-rank the tasks every now and then. */
if (e->tasks_age % engine_tasksreweight == 1) {
// tic = getticks();
scheduler_reweight(&e->sched);
// message( "scheduler_reweight took %.3f ms." , (double)(getticks() -
// tic)/CPU_TPS*1000 );
}
e->tasks_age += 1;
TIMER_TOC(timer_prepare);
}
/**
* @brief Implements a barrier for the #runner threads.
*
* @param e The #engine.
* @param tid The thread ID
*/
void engine_barrier(struct engine *e, int tid) {
/* First, get the barrier mutex. */
if (pthread_mutex_lock(&e->barrier_mutex) != 0)
error("Failed to get barrier mutex.");
/* This thread is no longer running. */
e->barrier_running -= 1;
/* If all threads are in, send a signal... */
if (e->barrier_running == 0)
if (pthread_cond_broadcast(&e->barrier_cond) != 0)
error("Failed to broadcast barrier full condition.");
/* Wait for the barrier to open. */
while (e->barrier_launch == 0 || tid >= e->barrier_launchcount)
if (pthread_cond_wait(&e->barrier_cond, &e->barrier_mutex) != 0)
error("Eror waiting for barrier to close.");
/* This thread has been launched. */
e->barrier_running += 1;
e->barrier_launch -= 1;
/* If I'm the last one out, signal the condition again. */
if (e->barrier_launch == 0)
if (pthread_cond_broadcast(&e->barrier_cond) != 0)
error("Failed to broadcast empty barrier condition.");
/* Last but not least, release the mutex. */
if (pthread_mutex_unlock(&e->barrier_mutex) != 0)
error("Failed to get unlock the barrier mutex.");
}
/**
* @brief Mapping function to collect the data from the second kick.
*/
void engine_collect_kick2(struct cell *c) {
int k, updated = 0;
float dt_min = FLT_MAX, dt_max = 0.0f;
double ekin = 0.0, epot = 0.0;
float mom[3] = {0.0f, 0.0f, 0.0f}, ang[3] = {0.0f, 0.0f, 0.0f};
struct cell *cp;
/* If I am a super-cell, return immediately. */
if (c->kick2 != NULL || c->count == 0) return;
/* If this cell is not split, I'm in trouble. */
if (!c->split) error("Cell has no super-cell.");
/* Collect the values from the progeny. */
for (k = 0; k < 8; k++)
if ((cp = c->progeny[k]) != NULL) {
engine_collect_kick2(cp);
dt_min = fminf(dt_min, cp->dt_min);
dt_max = fmaxf(dt_max, cp->dt_max);
updated += cp->updated;
ekin += cp->ekin;
epot += cp->epot;
mom[0] += cp->mom[0];
mom[1] += cp->mom[1];
mom[2] += cp->mom[2];
ang[0] += cp->ang[0];
ang[1] += cp->ang[1];
ang[2] += cp->ang[2];
}
/* Store the collected values in the cell. */
c->dt_min = dt_min;
c->dt_max = dt_max;
c->updated = updated;
c->ekin = ekin;
c->epot = epot;
c->mom[0] = mom[0];
c->mom[1] = mom[1];
c->mom[2] = mom[2];
c->ang[0] = ang[0];
c->ang[1] = ang[1];
c->ang[2] = ang[2];
}
/**
* @brief Compute the force on a single particle brute-force.
*/
// void engine_single_density ( double *dim , long long int pid , struct part
// *__restrict__ parts , int N , int periodic ) {
//
// int i, k;
// double r2, dx[3];
// float fdx[3], ih;
// struct part p;
//
// /* Find "our" part. */
// for ( k = 0 ; k < N && parts[k].id != pid ; k++ );
// if ( k == N )
// error( "Part not found." );
// p = parts[k];
//
// /* Clear accumulators. */
// ih = 1.0f / p.h;
// p.rho = 0.0f; p.rho_dh = 0.0f;
// p.density.wcount = 0.0f; p.density.wcount_dh = 0.0f;
// p.density.div_v = 0.0;
// for ( k=0 ; k < 3 ; k++)
// p.density.curl_v[k] = 0.0;
//
// /* Loop over all particle pairs (force). */
// for ( k = 0 ; k < N ; k++ ) {
// if ( parts[k].id == p.id )
// continue;
// for ( i = 0 ; i < 3 ; i++ ) {
// dx[i] = p.x[i] - parts[k].x[i];
// if ( periodic ) {
// if ( dx[i] < -dim[i]/2 )
// dx[i] += dim[i];
// else if ( dx[i] > dim[i]/2 )
// dx[i] -= dim[i];
// }
// fdx[i] = dx[i];
// }
// r2 = fdx[0]*fdx[0] + fdx[1]*fdx[1] + fdx[2]*fdx[2];
// if ( r2 < p.h*p.h*kernel_gamma2 ) {
// runner_iact_nonsym_density( r2 , fdx , p.h , parts[k].h , &p ,
// &parts[k] );
// }
// }
//
// /* Dump the result. */
// p.rho = ih * ih * ih * ( p.rho + p.mass*kernel_root );
// p.rho_dh = p.rho_dh * ih * ih * ih * ih;
// p.density.wcount = ( p.density.wcount + kernel_root ) * ( 4.0f / 3.0 *
// M_PI * kernel_gamma3 );
// message( "part %lli (h=%e) has wcount=%e, rho=%e, rho_dh=%e." , p.id ,
// p.h , p.density.wcount , p.rho , p.rho_dh );
// fflush(stdout);
//
// }
// void engine_single_force ( double *dim , long long int pid , struct part
// *__restrict__ parts , int N , int periodic ) {
//
// int i, k;
// double r2, dx[3];
// float fdx[3];
// struct part p;
//
// /* Find "our" part. */
// for ( k = 0 ; k < N && parts[k].id != pid ; k++ );
// if ( k == N )
// error( "Part not found." );
// p = parts[k];
//
// /* Clear accumulators. */
// p.a[0] = 0.0f; p.a[1] = 0.0f; p.a[2] = 0.0f;
// p.force.u_dt = 0.0f; p.force.h_dt = 0.0f; p.force.v_sig = 0.0f;
//
// /* Loop over all particle pairs (force). */
// for ( k = 0 ; k < N ; k++ ) {
// // for ( k = N-1 ; k >= 0 ; k-- ) {
// if ( parts[k].id == p.id )
// continue;
// for ( i = 0 ; i < 3 ; i++ ) {
// dx[i] = p.x[i] - parts[k].x[i];
// if ( periodic ) {
// if ( dx[i] < -dim[i]/2 )
// dx[i] += dim[i];
// else if ( dx[i] > dim[i]/2 )
// dx[i] -= dim[i];
// }
// fdx[i] = dx[i];
// }
// r2 = fdx[0]*fdx[0] + fdx[1]*fdx[1] + fdx[2]*fdx[2];
// if ( r2 < p.h*p.h*kernel_gamma2 || r2 <
// parts[k].h*parts[k].h*kernel_gamma2 ) {
// p.a[0] = 0.0f; p.a[1] = 0.0f; p.a[2] = 0.0f;
// p.force.u_dt = 0.0f; p.force.h_dt = 0.0f; p.force.v_sig = 0.0f;
// runner_iact_nonsym_force( r2 , fdx , p.h , parts[k].h , &p ,
// &parts[k] );
// double dvdr = ( (p.v[0]-parts[k].v[0])*fdx[0] +
// (p.v[1]-parts[k].v[1])*fdx[1] + (p.v[2]-parts[k].v[2])*fdx[2] ) / sqrt(r2);
// message( "part %lli and %lli interact (r=%.3e,dvdr=%.3e) with
// a=[%.3e,%.3e,%.3e], dudt=%.3e." ,
// p.id , parts[k].id , sqrt(r2) , dvdr , p.a[0] , p.a[1],
// p.a[2] , p.force.u_dt );
// }
// }
//
// /* Dump the result. */
// // message( "part %lli (h=%e) has a=[%.3e,%.3e,%.3e], udt=%e." , p.id ,
// p.h , p.a[0] , p.a[1] , p.a[2] , p.force.u_dt );
// fflush(stdout);
//
// }
/**
* @brief Launch the runners.
*
* @param e The #engine.
* @param nr_runners The number of #runner to let loose.
* @param mask The task mask to launch.
*/
void engine_launch(struct engine *e, int nr_runners, unsigned int mask) {
/* Prepare the scheduler. */
atomic_inc(&e->sched.waiting);
/* Cry havoc and let loose the dogs of war. */
e->barrier_launch = nr_runners;
e->barrier_launchcount = nr_runners;
if (pthread_cond_broadcast(&e->barrier_cond) != 0)
error("Failed to broadcast barrier open condition.");
/* Load the tasks. */
pthread_mutex_unlock(&e->barrier_mutex);
scheduler_start(&e->sched, mask);
pthread_mutex_lock(&e->barrier_mutex);
/* Remove the safeguard. */
pthread_mutex_lock(&e->sched.sleep_mutex);
atomic_dec(&e->sched.waiting);
pthread_cond_broadcast(&e->sched.sleep_cond);
pthread_mutex_unlock(&e->sched.sleep_mutex);
/* Sit back and wait for the runners to come home. */
while (e->barrier_launch || e->barrier_running)
if (pthread_cond_wait(&e->barrier_cond, &e->barrier_mutex) != 0)
error("Error while waiting for barrier.");
}
void hassorted(struct cell *c) {
if (c->sorted) error("Suprious sorted flags.");
if (c->split)
for (int k = 0; k < 8; k++)
if (c->progeny[k] != NULL) hassorted(c->progeny[k]);
}
/**
* @brief Let the #engine loose to compute the forces.
*
* @param e The #engine.
*/
void engine_step(struct engine *e) {
int k;
float dt = e->dt, dt_step, dt_max = 0.0f, dt_min = FLT_MAX;
double epot = 0.0, ekin = 0.0;
float mom[3] = {0.0, 0.0, 0.0};
float ang[3] = {0.0, 0.0, 0.0};
int count = 0;
struct cell *c;
struct space *s = e->s;
TIMER_TIC2
/* Get the maximum dt. */
if (e->policy & engine_policy_multistep) {
dt_step = 2.0f * dt;
for (k = 0; k < 32 && (e->step & (1 << k)) == 0; k++) dt_step *= 2;
} else
dt_step = FLT_MAX;
/* Set the maximum dt. */
e->dt_step = dt_step;
e->s->dt_step = dt_step;
// message( "dt_step set to %.3e (dt=%.3e)." , dt_step , e->dt );
// fflush(stdout);
// printParticle( parts , 432626 );
/* First kick. */
if (e->step == 0 || !(e->policy & engine_policy_fixdt)) {
TIMER_TIC
engine_launch(e, (e->nr_threads > 8) ? 8 : e->nr_threads,
(1 << task_type_kick1) | (1 << task_type_link));
TIMER_TOC(timer_kick1);
}
/* Check if all the kick1 threads have executed. */
/* for ( k = 0 ; k < e->sched.nr_tasks ; k++ )
if ( e->sched.tasks[k].type == task_type_kick1 &&
e->sched.tasks[k].toc == 0 )
error( "Not all kick1 tasks completed." ); */
// for(k=0; k<10; ++k)
// printParticle(parts, k);
// printParticle( e->s->parts , 3392063069037 , e->s->nr_parts );
/* Re-distribute the particles amongst the nodes? */
if (e->forcerepart) engine_repartition(e);
/* Prepare the space. */
engine_prepare(e);
// engine_single_density( e->s->dim , 3392063069037 , e->s->parts ,
// e->s->nr_parts , e->s->periodic );
/* Send off the runners. */
TIMER_TIC
engine_launch(e, e->nr_threads,
(1 << task_type_sort) | (1 << task_type_self) |
(1 << task_type_pair) | (1 << task_type_sub) |
(1 << task_type_ghost) | (1 << task_type_kick2) |
(1 << task_type_send) | (1 << task_type_recv) |
(1 << task_type_grav_pp) | (1 << task_type_grav_mm) |
(1 << task_type_grav_up) | (1 << task_type_grav_down) |
(1 << task_type_link));
TIMER_TOC(timer_runners);
// engine_single_force( e->s->dim , 8328423931905 , e->s->parts ,
// e->s->nr_parts , e->s->periodic );
// for(k=0; k<10; ++k)
// printParticle(parts, k);
// printParticle( parts , 432626 );
// printParticle( e->s->parts , 3392063069037 , e->s->nr_parts );
// printParticle( e->s->parts , 8328423931905 , e->s->nr_parts );
/* Collect the cell data from the second kick. */
for (k = 0; k < s->nr_cells; k++)
if (s->cells[k].nodeID == e->nodeID) {
c = &s->cells[k];
engine_collect_kick2(c);
dt_min = fminf(dt_min, c->dt_min);
dt_max = fmaxf(dt_max, c->dt_max);
ekin += c->ekin;
epot += c->epot;
count += c->updated;
mom[0] += c->mom[0];
mom[1] += c->mom[1];
mom[2] += c->mom[2];
ang[0] += c->ang[0];
ang[1] += c->ang[1];
ang[2] += c->ang[2];
}
/* Aggregate the data from the different nodes. */
#ifdef WITH_MPI
double in[3], out[3];
out[0] = dt_min;
if (MPI_Allreduce(out, in, 1, MPI_DOUBLE, MPI_MIN, MPI_COMM_WORLD) !=
MPI_SUCCESS)
error("Failed to aggregate dt_min.");
dt_min = in[0];
out[0] = dt_max;
if (MPI_Allreduce(out, in, 1, MPI_DOUBLE, MPI_MAX, MPI_COMM_WORLD) !=
MPI_SUCCESS)
error("Failed to aggregate dt_max.");
dt_max = in[0];
out[0] = count;
out[1] = ekin;
out[2] = epot;
if (MPI_Allreduce(out, in, 3, MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD) !=
MPI_SUCCESS)
error("Failed to aggregate energies.");
count = in[0];
ekin = in[1];
epot = in[2];
/* int nr_parts;
if ( MPI_Allreduce( &s->nr_parts , &nr_parts , 1 , MPI_INT , MPI_SUM ,
MPI_COMM_WORLD ) != MPI_SUCCESS )
error( "Failed to aggregate particle count." );
if ( e->nodeID == 0 )
message( "nr_parts=%i." , nr_parts ); */
#endif
e->dt_min = dt_min;
e->dt_max = dt_max;
e->count_step = count;
e->ekin = ekin;
e->epot = epot;
// printParticle( e->s->parts , 382557 , e->s->nr_parts );
// message( "dt_min/dt_max is %e/%e." , dt_min , dt_max ); fflush(stdout);
// message( "etot is %e (ekin=%e, epot=%e)." , ekin+epot , ekin , epot );
// fflush(stdout);
// message( "total momentum is [ %e , %e , %e ]." , mom[0] , mom[1] , mom[2]
// ); fflush(stdout);
// message( "total angular momentum is [ %e , %e , %e ]." , ang[0] , ang[1] ,
// ang[2] ); fflush(stdout);
// message( "updated %i parts (dt_step=%.3e)." , count , dt_step );
// fflush(stdout);
/* Increase the step. */
e->step += 1;
/* Does the time step need adjusting? */
if (e->policy & engine_policy_fixdt) {
dt = e->dt_orig;
} else {
if (dt == 0) {
e->nullstep += 1;
if (e->dt_orig > 0.0) {
dt = e->dt_orig;
while (dt_min < dt) dt *= 0.5;
while (dt_min > 2 * dt) dt *= 2.0;
} else
dt = dt_min;
for (k = 0; k < s->nr_parts; k++) {
/* struct part *p = &s->parts[k];
struct xpart *xp = &s->xparts[k];
float dt_curr = dt;
for ( int j = (int)( p->dt / dt ) ; j > 1 ; j >>= 1 )
dt_curr *= 2.0f;
xp->dt_curr = dt_curr; */
s->parts[k].dt = dt;
s->xparts[k].dt_curr = dt;
}
// message( "dt_min=%.3e, adjusting time step to dt=%e." , dt_min , e->dt
// );
} else {
while (dt_min < dt) {
dt *= 0.5;
e->step *= 2;
e->nullstep *= 2;
// message( "dt_min dropped below time step, adjusting to dt=%e." ,
// e->dt );
}
while (dt_min > 2 * dt && (e->step & 1) == 0) {
dt *= 2.0;
e->step /= 2;
e->nullstep /= 2;
// message( "dt_min is larger than twice the time step, adjusting to
// dt=%e." , e->dt );
}
}
}
e->dt = dt;
/* Set the system time. */
e->time = dt * (e->step - e->nullstep);
TIMER_TOC2(timer_step);
}
/**
* @brief Create and fill the proxies.
*
* @param e The #engine.
*/
void engine_makeproxies(struct engine *e) {
int i, j, k, ii, jj, kk;
int cid, cjd, pid, ind[3], *cdim = e->s->cdim;
struct space *s = e->s;
struct cell *cells = s->cells;
struct proxy *proxies = e->proxies;
/* Prepare the proxies and the proxy index. */
if (e->proxy_ind == NULL)
if ((e->proxy_ind = (int *)malloc(sizeof(int) * e->nr_nodes)) == NULL)
error("Failed to allocate proxy index.");
for (k = 0; k < e->nr_nodes; k++) e->proxy_ind[k] = -1;
e->nr_proxies = 0;
/* The following loop is super-clunky, but it's necessary
to ensure that the order of the send and recv cells in
the proxies is identical for all nodes! */
/* Loop over each cell in the space. */
for (ind[0] = 0; ind[0] < cdim[0]; ind[0]++)
for (ind[1] = 0; ind[1] < cdim[1]; ind[1]++)
for (ind[2] = 0; ind[2] < cdim[2]; ind[2]++) {
/* Get the cell ID. */
cid = cell_getid(cdim, ind[0], ind[1], ind[2]);
/* Loop over all its neighbours (periodic). */
for (i = -1; i <= 1; i++) {
ii = ind[0] + i;
if (ii >= cdim[0])
ii -= cdim[0];
else if (ii < 0)
ii += cdim[0];
for (j = -1; j <= 1; j++) {
jj = ind[1] + j;
if (jj >= cdim[1])
jj -= cdim[1];
else if (jj < 0)
jj += cdim[1];
for (k = -1; k <= 1; k++) {
kk = ind[2] + k;
if (kk >= cdim[2])
kk -= cdim[2];
else if (kk < 0)
kk += cdim[2];
/* Get the cell ID. */
cjd = cell_getid(cdim, ii, jj, kk);
/* Add to proxies? */
if (cells[cid].nodeID == e->nodeID &&
cells[cjd].nodeID != e->nodeID) {
pid = e->proxy_ind[cells[cjd].nodeID];
if (pid < 0) {
if (e->nr_proxies == engine_maxproxies)
error("Maximum number of proxies exceeded.");
proxy_init(&proxies[e->nr_proxies], e->nodeID,
cells[cjd].nodeID);
e->proxy_ind[cells[cjd].nodeID] = e->nr_proxies;
pid = e->nr_proxies;
e->nr_proxies += 1;
}
proxy_addcell_in(&proxies[pid], &cells[cjd]);
proxy_addcell_out(&proxies[pid], &cells[cid]);
cells[cid].sendto |= (1ULL << pid);
}
if (cells[cjd].nodeID == e->nodeID &&
cells[cid].nodeID != e->nodeID) {
pid = e->proxy_ind[cells[cid].nodeID];
if (pid < 0) {
if (e->nr_proxies == engine_maxproxies)
error("Maximum number of proxies exceeded.");
proxy_init(&proxies[e->nr_proxies], e->nodeID,
cells[cid].nodeID);
e->proxy_ind[cells[cid].nodeID] = e->nr_proxies;
pid = e->nr_proxies;
e->nr_proxies += 1;
}
proxy_addcell_in(&proxies[pid], &cells[cid]);
proxy_addcell_out(&proxies[pid], &cells[cjd]);
cells[cjd].sendto |= (1ULL << pid);
}
}
}
}
}
}
/**
* @brief Split the underlying space according to the given grid.
*
* @param e The #engine.
* @param grid The grid.
*/
void engine_split(struct engine *e, int *grid) {
int j, k;
int ind[3];
struct space *s = e->s;
struct cell *c;
/* If we've got the wrong number of nodes, fail. */
if (e->nr_nodes != grid[0] * grid[1] * grid[2])
error("Grid size does not match number of nodes.");
/* Run through the cells and set their nodeID. */
// message("s->dim = [%e,%e,%e]", s->dim[0], s->dim[1], s->dim[2]);
for (k = 0; k < s->nr_cells; k++) {
c = &s->cells[k];
for (j = 0; j < 3; j++) ind[j] = c->loc[j] / s->dim[j] * grid[j];
c->nodeID = ind[0] + grid[0] * (ind[1] + grid[1] * ind[2]);
// message("cell at [%e,%e,%e]: ind = [%i,%i,%i], nodeID = %i", c->loc[0],
// c->loc[1], c->loc[2], ind[0], ind[1], ind[2], c->nodeID);
}
/* Make the proxies. */
engine_makeproxies(e);
/* Re-allocate the local parts. */
if (e->nodeID == 0)
message("Re-allocating parts array from %i to %i.", s->size_parts,
(int)(s->nr_parts * 1.2));
s->size_parts = s->nr_parts * 1.2;
struct part *parts_new;
struct xpart *xparts_new;
if (posix_memalign((void **)&parts_new, part_align,
sizeof(struct part) * s->size_parts) != 0 ||
posix_memalign((void **)&xparts_new, part_align,
sizeof(struct xpart) * s->size_parts) != 0)
error("Failed to allocate new part data.");
memcpy(parts_new, s->parts, sizeof(struct part) * s->nr_parts);
memcpy(xparts_new, s->xparts, sizeof(struct xpart) * s->nr_parts);
free(s->parts);
free(s->xparts);
s->parts = parts_new;
s->xparts = xparts_new;
}
/**
* @brief init an engine with the given number of threads, queues, and
* the given policy.
*
* @param e The #engine.
* @param s The #space in which this #runner will run.
* @param dt The initial time step to use.
* @param nr_threads The number of threads to spawn.
* @param nr_queues The number of task queues to create.
* @param nr_nodes The number of MPI ranks
* @param nodeID The MPI rank of this node
* @param policy The queueing policy to use.
*/
void engine_init(struct engine *e, struct space *s, float dt, int nr_threads,
int nr_queues, int nr_nodes, int nodeID, int policy) {
int k;
float dt_min = dt;
#if defined(HAVE_SETAFFINITY)
int nr_cores = sysconf(_SC_NPROCESSORS_ONLN);
int i, j, cpuid[nr_cores];
cpu_set_t cpuset;
if (policy & engine_policy_cputight) {
for (k = 0; k < nr_cores; k++) cpuid[k] = k;
} else {
/* Get next highest power of 2. */
int maxint = 1;
while (maxint < nr_cores) maxint *= 2;
cpuid[0] = 0;
k = 1;
for (i = 1; i < maxint; i *= 2)
for (j = maxint / i / 2; j < maxint; j += maxint / i)
if (j < nr_cores && j != 0) cpuid[k++] = j;
if (nodeID == 0) {
#ifdef WITH_MPI
message("engine_init: cpu map is [ ");
#else
printf("[%03i] engine_init: cpu map is [ ", nodeID);
#endif
for (i = 0; i < nr_cores; i++) printf("%i ", cpuid[i]);
printf("].\n");
}
}
#endif
/* Store the values. */
e->s = s;
e->nr_threads = nr_threads;
e->policy = policy;
e->step = 0;
e->nullstep = 0;
e->time = 0.0;
e->nr_nodes = nr_nodes;
e->nodeID = nodeID;
e->proxy_ind = NULL;
e->nr_proxies = 0;
e->forcerebuild = 1;
e->forcerepart = 0;
e->links = NULL;
e->nr_links = 0;
engine_rank = nodeID;
/* Make the space link back to the engine. */
s->e = e;
/* Are we doing stuff in parallel? */
if (nr_nodes > 1) {
#ifndef HAVE_MPI
error("SWIFT was not compiled with MPI support.");
#else
e->policy |= engine_policy_mpi;
if ((e->proxies = (struct proxy *)malloc(sizeof(struct proxy) *
engine_maxproxies)) == NULL)
error("Failed to allocate memory for proxies.");
bzero(e->proxies, sizeof(struct proxy) * engine_maxproxies);
e->nr_proxies = 0;
#endif
}
/* First of all, init the barrier and lock it. */
if (pthread_mutex_init(&e->barrier_mutex, NULL) != 0)
error("Failed to initialize barrier mutex.");
if (pthread_cond_init(&e->barrier_cond, NULL) != 0)
error("Failed to initialize barrier condition variable.");
if (pthread_mutex_lock(&e->barrier_mutex) != 0)
error("Failed to lock barrier mutex.");
e->barrier_running = 0;
e->barrier_launch = 0;
e->barrier_launchcount = 0;
/* Run through the parts and get the minimum time step. */
e->dt_orig = dt;
for (k = 0; k < s->nr_parts; k++)
if (s->parts[k].dt < dt_min) dt_min = s->parts[k].dt;
if (dt_min == 0.0f)
dt = 0.0f;
else
while (dt > dt_min) dt *= 0.5f;
e->dt = dt;
/* Init the scheduler. */
scheduler_init(&e->sched, e->s, nr_queues, scheduler_flag_steal, e->nodeID);
s->nr_queues = nr_queues;
/* Append a kick1 task to each cell. */
scheduler_reset(&e->sched, s->tot_cells);
for (k = 0; k < s->nr_cells; k++)
s->cells[k].kick1 =
scheduler_addtask(&e->sched, task_type_kick1, task_subtype_none, 0, 0,
&s->cells[k], NULL, 0);
scheduler_ranktasks(&e->sched);
/* Allocate and init the threads. */
if ((e->runners =
(struct runner *)malloc(sizeof(struct runner) * nr_threads)) == NULL)
error("Failed to allocate threads array.");
for (k = 0; k < nr_threads; k++) {
e->runners[k].id = k;
e->runners[k].e = e;
e->barrier_running += 1;
if (pthread_create(&e->runners[k].thread, NULL, &runner_main,
&e->runners[k]) != 0)
error("Failed to create runner thread.");
if (e->policy & engine_policy_setaffinity) {
#if defined(HAVE_SETAFFINITY)
/* Set a reasonable queue ID. */
e->runners[k].cpuid = cpuid[k % nr_cores];
if (nr_queues < nr_threads)
e->runners[k].qid = cpuid[k % nr_cores] * nr_queues / nr_cores;
else
e->runners[k].qid = k;
/* Set the cpu mask to zero | e->id. */
CPU_ZERO(&cpuset);
CPU_SET(cpuid[k % nr_cores], &cpuset);
/* Apply this mask to the runner's pthread. */
if (pthread_setaffinity_np(e->runners[k].thread, sizeof(cpu_set_t),
&cpuset) != 0)
error("Failed to set thread affinity.");
#else
error("SWIFT was not compiled with affinity enabled.");
#endif
} else {
e->runners[k].cpuid = k;
e->runners[k].qid = k * nr_queues / nr_threads;
}
// message( "runner %i on cpuid=%i with qid=%i." , e->runners[k].id ,
// e->runners[k].cpuid , e->runners[k].qid );
}
/* Wait for the runner threads to be in place. */
while (e->barrier_running || e->barrier_launch)
if (pthread_cond_wait(&e->barrier_cond, &e->barrier_mutex) != 0)
error("Error while waiting for runner threads to get in place.");
}