-
Pedro Gonnet authored
Former-commit-id: 9b7880b04520458efd8729c5dfadf2a15caaaea9
Pedro Gonnet authoredFormer-commit-id: 9b7880b04520458efd8729c5dfadf2a15caaaea9
test.c 32.41 KiB
/*******************************************************************************
* This file is part of SWIFT.
* Coypright (c) 2012 Pedro Gonnet (pedro.gonnet@durham.ac.uk),
* Matthieu Schaller (matthieu.schaller@durham.ac.uk)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
******************************************************************************/
/* Config parameters. */
#include "../config.h"
/* Some standard headers. */
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <pthread.h>
#include <math.h>
#include <float.h>
#include <limits.h>
#include <fenv.h>
#include <omp.h>
/* Conditional headers. */
#ifdef HAVE_LIBZ
#include <zlib.h>
#endif
/* Local headers. */
#include "swift.h"
/* Ticks per second on this machine. */
#ifndef CPU_TPS
#define CPU_TPS 2.67e9
#endif
/* Engine policy flags. */
#ifndef ENGINE_POLICY
#define ENGINE_POLICY engine_policy_none
#endif
/* Error macro. */
#define error(s) { printf( "%s:%s:%i: %s\n" , __FILE__ , __FUNCTION__ , __LINE__ , s ); abort(); }
/**
* @brief Mapping function to draw a specific cell (gnuplot).
*/
void map_cells_plot ( struct cell *c , void *data ) {
int depth = *(int *)data;
double *l = c->loc, *h = c->h;
if ( c->depth <= depth ) {
printf( "%.16e %.16e %.16e\n" , l[0] , l[1] , l[2] );
printf( "%.16e %.16e %.16e\n" , l[0]+h[0] , l[1] , l[2] );
printf( "%.16e %.16e %.16e\n" , l[0]+h[0] , l[1]+h[1] , l[2] );
printf( "%.16e %.16e %.16e\n\n\n" , l[0] , l[1]+h[1] , l[2] );
printf( "%.16e %.16e %.16e\n" , l[0] , l[1] , l[2]+h[2] );
printf( "%.16e %.16e %.16e\n" , l[0]+h[0] , l[1] , l[2]+h[2] );
printf( "%.16e %.16e %.16e\n" , l[0]+h[0] , l[1]+h[1] , l[2]+h[2] );
printf( "%.16e %.16e %.16e\n\n\n" , l[0] , l[1]+h[1] , l[2]+h[2] );
printf( "%.16e %.16e %.16e\n" , l[0] , l[1] , l[2] );
printf( "%.16e %.16e %.16e\n" , l[0] , l[1]+h[1] , l[2] );
printf( "%.16e %.16e %.16e\n" , l[0] , l[1]+h[1] , l[2]+h[2] );
printf( "%.16e %.16e %.16e\n\n\n" , l[0] , l[1] , l[2]+h[2] );
printf( "%.16e %.16e %.16e\n" , l[0]+h[0] , l[1] , l[2] );
printf( "%.16e %.16e %.16e\n" , l[0]+h[0] , l[1]+h[1] , l[2] );
printf( "%.16e %.16e %.16e\n" , l[0]+h[0] , l[1]+h[1] , l[2]+h[2] );
printf( "%.16e %.16e %.16e\n\n\n" , l[0]+h[0] , l[1] , l[2] +h[2]);
printf( "%.16e %.16e %.16e\n" , l[0] , l[1] , l[2] );
printf( "%.16e %.16e %.16e\n" , l[0] , l[1] , l[2]+h[2] );
printf( "%.16e %.16e %.16e\n" , l[0]+h[0] , l[1] , l[2]+h[2] );
printf( "%.16e %.16e %.16e\n\n\n" , l[0]+h[0] , l[1] , l[2] );
printf( "%.16e %.16e %.16e\n" , l[0] , l[1]+h[1] , l[2] );
printf( "%.16e %.16e %.16e\n" , l[0] , l[1]+h[1] , l[2]+h[2] );
printf( "%.16e %.16e %.16e\n" , l[0]+h[0] , l[1]+h[1] , l[2]+h[2] );
printf( "%.16e %.16e %.16e\n\n\n" , l[0]+h[0] , l[1]+h[1] , l[2] );
if ( !c->split ) {
for ( int k = 0 ; k < c->count ; k++ )
printf( "0 0 0 %.16e %.16e %.16e\n" ,
c->parts[k].x[0] , c->parts[k].x[1] , c->parts[k].x[2] );
printf( "\n\n" );
}
/* else
for ( int k = 0 ; k < 8 ; k++ )
if ( c->progeny[k] != NULL )
map_cells_plot( c->progeny[k] , data ); */
}
}
/**
* @brief Mapping function for checking if each part is in its box.
*/
/* void map_check ( struct part *p , struct cell *c , void *data ) {
if ( p->x[0] < c->loc[0] || p->x[0] > c->loc[0]+c->h[0] ||
p->x[0] < c->loc[0] || p->x[0] > c->loc[0]+c->h[0] ||
p->x[0] < c->loc[0] || p->x[0] > c->loc[0]+c->h[0] )
printf( "map_check: particle %i is outside of its box.\n" , p->id );
} */
/**
* @brief Mapping function for neighbour count.
*/
void map_cellcheck ( struct cell *c , void *data ) {
int k, *count = (int *)data;
struct part *p;
/* Loop over all parts and check if they are in the cell. */
for ( k = 0 ; k < c->count ; k++ ) {
*count += 1;
p = &c->parts[k];
if ( p->x[0] < c->loc[0] || p->x[1] < c->loc[1] || p->x[2] < c->loc[2] ||
p->x[0] > c->loc[0] + c->h[0] || p->x[1] > c->loc[1] + c->h[1] || p->x[2] > c->loc[2] + c->h[2] ) {
printf( "map_cellcheck: particle at [ %.16e %.16e %.16e ] outside of cell [ %.16e %.16e %.16e ] - [ %.16e %.16e %.16e ].\n" ,
p->x[0] , p->x[1] , p->x[2] ,
c->loc[0] , c->loc[1] , c->loc[2] ,
c->loc[0] + c->h[0] , c->loc[1] + c->h[1] , c->loc[2] + c->h[2] );
error( "particle out of bounds!" );
}
}
}
/**
* @brief Mapping function for maxdepth cell count.
*/
void map_maxdepth ( struct cell *c , void *data ) {
int maxdepth = ((int *)data)[0];
int *count = &((int *)data)[1];
// printf( "%e\n" , p->count );
if ( c->depth == maxdepth )
*count += 1;
}
/**
* @brief Mapping function for neighbour count.
*/
void map_count ( struct part *p , struct cell *c , void *data ) {
double *wcount = (double *)data;
// printf( "%i %e %e\n" , p->id , p->count , p->count_dh );
*wcount += p->density.wcount;
}
void map_wcount_min ( struct part *p , struct cell *c , void *data ) {
struct part **p2 = (struct part **)data;
if ( p->density.wcount < (*p2)->density.wcount )
*p2 = p;
}
void map_wcount_max ( struct part *p , struct cell *c , void *data ) {
struct part **p2 = (struct part **)data;
if ( p->density.wcount > (*p2)->density.wcount )
*p2 = p;
}
void map_h_min ( struct part *p , struct cell *c , void *data ) {
struct part **p2 = (struct part **)data;
if ( p->h < (*p2)->h )
*p2 = p;
}
void map_h_max ( struct part *p , struct cell *c , void *data ) {
struct part **p2 = (struct part **)data;
if ( p->h > (*p2)->h )
*p2 = p;
}
/**
* @brief Mapping function for neighbour count.
*/
void map_icount ( struct part *p , struct cell *c , void *data ) {
// int *count = (int *)data;
// printf( "%i\n" , p->icount );
// *count += p->icount;
}
/**
* @brief Mapping function to print the particle position.
*/
void map_dump ( struct part *p , struct cell *c , void *data ) {
double *shift = (double *)data;
printf( "%g\t%g\t%g\n" , p->x[0]-shift[0] , p->x[1]-shift[1] , p->x[2]-shift[2] );
}
/**
* @brief Read coordinates from a text file.
*
* @param fname The name of the coordinate file.
* @param parts An array of #part in which to store the coordinates.
* @param N The number of parts to read.
*/
void read_coords ( char *fname , struct part *parts , int N ) {
#ifdef HAVE_LIBZ
gzFile fd;
char buff[1024];
int k;
/* Open the given file. */
if ( ( fd = gzopen( fname , "r" ) ) == NULL )
error( "Failed to open coordinate file" );
/* Read the coordinates into the part positions. */
for ( k = 0 ; k < N ; k++ ) {
if ( gzgets( fd , buff , 1024 ) == NULL )
error( "Error reading coordinate file." );
if ( sscanf( buff , "%lf %lf %lf" , &parts[k].x[0] , &parts[k].x[1] , &parts[k].x[2] ) != 3 ) {
printf( "read_coords: failed to parse %ith entry.\n" , k );
error( "Error parsing coordinate file." );
}
}
/* Wrap it up. */
gzclose( fd );
#else
FILE *fd;
int k;
/* Open the given file. */
if ( ( fd = fopen( fname , "r" ) ) == NULL )
error( "Failed to open coordinate file" );
/* Read the coordinates into the part positions. */
for ( k = 0 ; k < N ; k++ ) {
if ( fscanf( fd , "%lf %lf %lf" , &parts[k].x[0] , &parts[k].x[1] , &parts[k].x[2] ) != 3 ) {
printf( "read_coords: failed to read %ith entry.\n" , k );
error( "Error reading coordinate file." );
}
}
/* Wrap it up. */
fclose( fd );
#endif
}
/**
* @brief Read cutoffs from a text file.
*
* @param fname The name of the cutoffs file.
* @param parts An array of #part in which to store the cutoffs.
* @param N The number of parts to read.
*/
void read_cutoffs ( char *fname , struct part *parts , int N ) {
#ifdef HAVE_LIBZ
gzFile fd;
char buff[1024];
int k;
/* Open the given file. */
if ( ( fd = gzopen( fname , "r" ) ) == NULL )
error( "Failed to open cutoff file" );
/* Read the coordinates into the part positions. */
for ( k = 0 ; k < N ; k++ ) {
if ( gzgets( fd , buff , 1024 ) == NULL )
error( "Error reading cutoff file." );
if ( sscanf( buff , "%ef" , &parts[k].h ) != 1 ) {
printf( "read_cutoffs: failed to parse %ith entry.\n" , k );
error( "Error parsing cutoff file." );
}
}
/* Wrap it up. */
gzclose( fd );
#else
FILE *fd;
int k;
/* Open the given file. */
if ( ( fd = fopen( fname , "r" ) ) == NULL )
error( "Failed to open cutoff file" );
/* Read the coordinates into the part positions. */
for ( k = 0 ; k < N ; k++ ) {
if ( fscanf( fd , "%ef" , &parts[k].h ) != 1 ) {
printf( "read_cutoffs: failed to read %ith entry.\n" , k );
error( "Error reading cutoff file." );
}
}
/* Wrap it up. */
fclose( fd );
#endif
}
/**
* @brief Read id from a text file.
*
* @param fname The name of the id file.
* @param parts An array of #part in which to store the dt.
* @param N The number of parts to read.
*/
void read_id ( char *fname , struct part *parts , int N ) {
#ifdef HAVE_LIBZ
gzFile fd;
char buff[1024];
int k;
/* Open the given file. */
if ( ( fd = gzopen( fname , "r" ) ) == NULL )
error( "Failed to open id file" );
/* Read the coordinates into the part positions. */
for ( k = 0 ; k < N ; k++ ) {
if ( gzgets( fd , buff , 1024 ) == NULL )
error( "Error reading id file." );
if ( sscanf( buff , "%lli" , &parts[k].id ) != 1 ) {
printf( "read_id: failed to parse %ith entry.\n" , k );
error( "Error parsing id file." );
}
}
/* Wrap it up. */
gzclose( fd );
#else
FILE *fd;
int k;
/* Open the given file. */
if ( ( fd = fopen( fname , "r" ) ) == NULL )
error( "Failed to open id file" );
/* Read the coordinates into the part positions. */
for ( k = 0 ; k < N ; k++ ) {
if ( fscanf( fd , "%lli" , &parts[k].id ) != 1 ) {
printf( "read_id: failed to read %ith entry.\n" , k );
error( "Error reading id file." );
}
}
/* Wrap it up. */
fclose( fd );
#endif
}
/**
* @brief Read dt from a text file.
*
* @param fname The name of the dt file.
* @param parts An array of #part in which to store the dt.
* @param N The number of parts to read.
*/
void read_dt ( char *fname , struct part *parts , int N ) {
#ifdef HAVE_LIBZ
gzFile fd;
char buff[1024];
int k;
/* Open the given file. */
if ( ( fd = gzopen( fname , "r" ) ) == NULL )
error( "Failed to open dt file" );
/* Read the coordinates into the part positions. */
for ( k = 0 ; k < N ; k++ ) {
if ( gzgets( fd , buff , 1024 ) == NULL )
error( "Error reading id file." );
if ( sscanf( buff , "%f" , &parts[k].dt ) != 1 )
error( "Error parsing dt file." );
}
/* Wrap it up. */
gzclose( fd );
#else
FILE *fd;
int k;
/* Open the given file. */
if ( ( fd = fopen( fname , "r" ) ) == NULL )
error( "Failed to open dt file" );
/* Read the coordinates into the part positions. */
for ( k = 0 ; k < N ; k++ ) {
if ( fscanf( fd , "%ef" , &parts[k].dt ) != 1 )
error( "Error reading dt file." );
}
/* Wrap it up. */
fclose( fd );
#endif
}
/**
* @brief Compute the average number of pairs per particle using
* a brute-force O(N^2) computation.
*
* @param dim The space dimensions.
* @param parts The #part array.
* @param N The number of parts.
* @param periodic Periodic boundary conditions flag.
*/
void pairs_n2 ( double *dim , struct part *__restrict__ parts , int N , int periodic ) {
int i, j, k, count = 0;
// int mj, mk;
// double maxratio = 1.0;
double r2, dx[3], rho = 0.0;
double rho_max = 0.0, rho_min = 100;
/* Loop over all particle pairs. */
#pragma omp parallel for schedule(dynamic), default(none), private(k,i,dx,r2), shared(periodic,parts,dim,N,stdout)
for ( j = 0 ; j < N ; j++ ) {
if ( j % 1000 == 0 ) {
printf( "pairs_n2: j=%i.\n" , j );
fflush(stdout);
}
for ( k = j+1 ; k < N ; k++ ) {
for ( i = 0 ; i < 3 ; i++ ) {
dx[i] = parts[j].x[i] - parts[k].x[i];
if ( periodic ) {
if ( dx[i] < -dim[i]/2 )
dx[i] += dim[i];
else if ( dx[i] > dim[i]/2 )
dx[i] -= dim[i];
}
}
r2 = dx[0]*dx[0] + dx[1]*dx[1] + dx[2]*dx[2];
if ( r2 < parts[j].h*parts[j].h || r2 < parts[k].h*parts[k].h ) {
runner_iact_density( r2 , NULL , parts[j].h , parts[k].h , &parts[j] , &parts[k] );
/* if ( parts[j].h / parts[k].h > maxratio )
#pragma omp critical
{
maxratio = parts[j].h / parts[k].h;
mj = j; mk = k;
}
else if ( parts[k].h / parts[j].h > maxratio )
#pragma omp critical
{
maxratio = parts[k].h / parts[j].h;
mj = j; mk = k;
} */
}
}
}
/* Aggregate the results. */
for ( k = 0 ; k < N ; k++ ) {
// count += parts[k].icount;
rho += parts[k].density.wcount;
rho_min = fmin( parts[k].density.wcount , rho_min );
rho_min = fmax( parts[k].density.wcount , rho_max );
}
/* Dump the result. */
printf( "pairs_n2: avg. density per part is %.3f (nr. pairs %.3f).\n" , rho/N + 32.0/3 , ((double)count)/N );
printf( "pairs_n2: densities are in [ %e , %e ].\n" , rho_min/N + 32.0/3 , rho_max/N + 32.0/3 );
/* printf( "pairs_n2: maximum ratio between parts %i [%e,%e,%e] and %i [%e,%e,%e] is %.3f/%.3f\n" ,
mj , parts[mj].x[0] , parts[mj].x[1] , parts[mj].x[2] ,
mk , parts[mk].x[0] , parts[mk].x[1] , parts[mk].x[2] ,
parts[mj].h , parts[mk].h ); fflush(stdout); */
fflush(stdout);
}
void pairs_single ( double *dim , long long int pid , struct part *__restrict__ parts , int N , int periodic ) {
int i, k;
// int mj, mk;
// double maxratio = 1.0;
double r2, dx[3];
float fdx[3];
struct part p;
// double ih = 12.0/6.25;
/* Find "our" part. */
for ( k = 0 ; k < N && parts[k].id != pid ; k++ );
if ( k == N )
error( "Part not found." );
p = parts[k];
printf( "pairs_single: part[%i].id == %lli.\n" , k , pid );
p.rho = 0.0;
p.density.wcount = 0.0;
// p.icount = 0;
p.rho_dh = 0.0;
/* Loop over all particle pairs. */
for ( k = 0 ; k < N ; k++ ) {
if ( parts[k].id == p.id )
continue;
for ( i = 0 ; i < 3 ; i++ ) {
dx[i] = p.x[i] - parts[k].x[i];
if ( periodic ) {
if ( dx[i] < -dim[i]/2 )
dx[i] += dim[i];
else if ( dx[i] > dim[i]/2 )
dx[i] -= dim[i];
}
fdx[i] = dx[i];
}
r2 = fdx[0]*fdx[0] + fdx[1]*fdx[1] + fdx[2]*fdx[2];
if ( r2 < p.h*p.h ) {
runner_iact_nonsym_density( r2 , fdx , p.h , parts[k].h , &p , &parts[k] );
/* printf( "pairs_simple: interacting particles %lli [%i,%i,%i] and %lli [%i,%i,%i], r=%e.\n" ,
pid , (int)(p.x[0]*ih) , (int)(p.x[1]*ih) , (int)(p.x[2]*ih) ,
parts[k].id , (int)(parts[k].x[0]*ih) , (int)(parts[k].x[1]*ih) , (int)(parts[k].x[2]*ih) ,
sqrtf(r2) ); */
}
}
/* Dump the result. */
printf( "pairs_single: wcount of part %lli (h=%e) is %f.\n" , p.id , p.h , p.density.wcount + 32.0/3 );
fflush(stdout);
}
/**
* @brief Find the pairs of a single particle
*
* @param dim The space dimensions.
* @param parts The #part array.
* @param N The number of parts.
* @param periodic Periodic boundary conditions flag.
* @param target the index of the target particle.
*/
void pairs_single_old ( double *dim , struct part *__restrict__ parts , int N , int periodic , int target ) {
int i, k, tid;
double r, tx[3], th, dx[3];
/* Get the target position and radius. */
for ( k = 0 ; k < 3 ; k++ )
tx[k] = parts[target].x[k];
th = parts[target].h;
tid = parts[target].id;
/* Loop over all particle pairs. */
#pragma omp parallel for schedule(dynamic), default(none), private(k,i,dx,r), shared(target,tx,th,tid,periodic,parts,dim,N)
for ( k = 0 ; k < N ; k++ ) {
if ( k == target )
continue;
for ( i = 0 ; i < 3 ; i++ ) {
dx[i] = tx[i] - parts[k].x[i];
if ( periodic ) {
if ( dx[i] < -dim[i]/2 )
dx[i] += dim[i];
else if ( dx[i] > dim[i]/2 )
dx[i] -= dim[i];
}
}
r = sqrt( dx[0]*dx[0] + dx[1]*dx[1] + dx[2]*dx[2] );
if ( r < th )
printf( "pairs_single: %i %lli [%e,%e,%e] %e\n" ,
tid , parts[k].id , dx[0] , dx[1] , dx[2] , r );
}
}
/**
* @brief Test the kernel function by dumping it in the interval [0,1].
*
* @param N number of intervals in [0,1].
*/
void kernel_dump ( int N ) {
int k;
float x, w, dw_dx;
float x4[4] = {0.0f,0.0f,0.0f,0.0f};
float w4[4] = {0.0f,0.0f,0.0f,0.0f};
// float dw_dx4[4] __attribute__ ((aligned (16)));
for ( k = 0 ; k <= N ; k++ ) {
x = ((float)k) / N * kernel_igamma;
x4[3] = x4[2]; x4[2] = x4[1]; x4[1] = x4[0]; x4[0] = x;
kernel_deval( x , &w , &dw_dx );
// kernel_deval_vec( (vector *)x4 , (vector *)w4 , (vector *)dw_dx4 );
printf( " %e %e %e %e %e %e %e\n" , x , w , dw_dx , w4[0] , w4[1] , w4[2] , w4[3] );
}
}
/**
* @brief Test the density function by dumping it for two random parts.
*
* @param N number of intervals in [0,1].
*/
void density_dump ( int N ) {
int k;
float r2[4] = {0.0f,0.0f,0.0f,0.0f}, hi[4], hj[4];
struct part *pi[4], *pj[4], Pi[4], Pj[4];
/* Init the interaction parameters. */
for ( k = 0 ; k < 4 ; k++ ) {
Pi[k].mass = 1.0f; Pi[k].rho = 0.0f; Pi[k].density.wcount = 0.0f;
Pj[k].mass = 1.0f; Pj[k].rho = 0.0f; Pj[k].density.wcount = 0.0f;
hi[k] = 1.0;
hj[k] = 1.0;
pi[k] = &Pi[k];
pj[k] = &Pj[k];
}
for ( k = 0 ; k <= N ; k++ ) {
r2[3] = r2[2]; r2[2] = r2[1]; r2[1] = r2[0];
r2[0] = ((float)k) / N;
Pi[0].density.wcount = 0; Pj[0].density.wcount = 0;
runner_iact_density( r2[0] , NULL , hi[0] , hj[0] , &Pi[0] , &Pj[0] );
printf( " %e %e %e" , r2[0] , Pi[0].density.wcount , Pj[0].density.wcount );
Pi[0].density.wcount = 0; Pj[0].density.wcount = 0;
Pi[1].density.wcount = 0; Pj[1].density.wcount = 0;
Pi[2].density.wcount = 0; Pj[2].density.wcount = 0;
Pi[3].density.wcount = 0; Pj[3].density.wcount = 0;
runner_iact_vec_density( r2 , NULL , hi , hj , pi , pj );
printf( " %e %e %e %e\n" , Pi[0].density.wcount , Pi[1].density.wcount , Pi[2].density.wcount , Pi[3].density.wcount );
}
}
/**
* @brief Main routine that loads a few particles and generates some output.
*
*/
int main ( int argc , char *argv[] ) {
int c, icount, j, k, N = 100, periodic = 1;
int nr_threads = 1, nr_queues = -1, runs = INT_MAX;
int data[2];
double dim[3] = { 1.0 , 1.0 , 1.0 }, shift[3] = { 0.0 , 0.0 , 0.0 };
double /*r_min = 0.01, r_max = 0.1,*/ h_max = -1.0 , scaling = 1.0, rho = 0.0;
double clock = DBL_MAX;
struct part *parts = NULL, *p;
struct space s;
struct engine e;
char ICfileName[200];
float dt_max = 0.0f;
ticks tic;
/* Choke on FP-exceptions. */
feenableexcept( FE_DIVBYZERO | FE_INVALID | FE_OVERFLOW );
/* Init the space. */
bzero( &s , sizeof(struct space) );
/* Parse the options */
while ( ( c = getopt( argc , argv , "a:c:d:f:m:q:r:s:t:w:z:" ) ) != -1 )
switch( c )
{
case 'a':
if ( sscanf( optarg , "%lf" , &scaling ) != 1 )
error( "Error parsing cutoff scaling." );
printf( "main: scaling cutoff by %.3f.\n" , scaling ); fflush(stdout);
break;
case 'c':
if ( sscanf( optarg , "%lf" , &clock ) != 1 )
error( "Error parsing clock." );
printf( "main: clock set to %.3e.\n" , clock ); fflush(stdout);
break;
case 'd':
if ( sscanf( optarg , "%f" , &dt_max ) != 1 )
error( "Error parsing timestep." );
printf( "main: dt set to %e.\n" , dt_max ); fflush(stdout);
break;
case 'f':
if( !strcpy(ICfileName, optarg))
error("Error parsing IC file name.");
printf("main: IC to be read from file '%s'\n", ICfileName);
break;
case 'm':
if ( sscanf( optarg , "%lf" , &h_max ) != 1 )
error( "Error parsing h_max." );
printf( "main: maximum h set to %e.\n" , h_max ); fflush(stdout);
break;
case 'q':
if ( sscanf( optarg , "%d" , &nr_queues ) != 1 )
error( "Error parsing number of queues." );
break;
case 'r':
if ( sscanf( optarg , "%d" , &runs ) != 1 )
error( "Error parsing number of runs." );
break;
case 's':
if ( sscanf( optarg , "%lf %lf %lf" , &shift[0] , &shift[1] , &shift[2] ) != 3 )
error( "Error parsing shift." );
printf( "main: will shift parts by [ %.3f %.3f %.3f ].\n" , shift[0] , shift[1] , shift[2] );
break;
case 't':
if ( sscanf( optarg , "%d" , &nr_threads ) != 1 )
error( "Error parsing number of threads." );
omp_set_num_threads( nr_threads );
break;
case 'w':
if ( sscanf( optarg , "%d" , &space_subsize ) != 1 )
error( "Error parsing sub size." );
printf( "main: sub size set to %i.\n" , space_subsize );
break;
case 'z':
if ( sscanf( optarg , "%d" , &space_splitsize ) != 1 )
error( "Error parsing split size." );
printf( "main: split size set to %i.\n" , space_splitsize );
break;
case '?':
error( "Unknown option." );
break;
}
/* How large are the parts? */
printf( "main: sizeof(struct part) is %li bytes.\n" , (long int)sizeof( struct part ));
/* Read particles and space information from (GADGET) IC */
tic = getticks();
read_ic(ICfileName, dim, &parts, &N, &periodic);
printf( "main: reading particle properties took %.3f ms.\n" , ((double)(getticks() - tic)) / CPU_TPS * 1000 ); fflush(stdout);
/* Apply h scaling */
if(scaling != 1.0)
for ( k = 0 ; k < N ; k++ )
parts[k].h *= scaling;
/* Apply shift */
if(shift[0] !=0 || shift[1] !=0 || shift[2] !=0 )
for ( k = 0 ; k < N ; k++ ) {
parts[k].x[0] += shift[0];
parts[k].x[1] += shift[1];
parts[k].x[2] += shift[2];
}
/* Dump the first few particles. */
// for(k=0; k<10; ++k)
// printParticle(parts, k, N);
// printParticle( parts , 6178 , N );
// pairs_single( dim , 8525152967533 , parts , N , periodic );
// printParticle( parts , 515150 );
// printParticle( parts , 494849 );
/* Dump the kernel to make sure its ok. */
// kernel_dump( 100 );
// density_dump( 100 );
/* Get the brute-force number of pairs. */
// pairs_n2( dim , parts , N , periodic );
// pairs_single( dim , 5245989477229 , parts , N , periodic );
// fflush( stdout );
/* Set default number of queues. */
if ( nr_queues < 0 )
nr_queues = nr_threads;
/* Initialize the space with this data. */
tic = getticks();
space_init( &s , dim , parts , N , periodic , h_max );
printf( "main: space_init took %.3f ms.\n" , ((double)(getticks() - tic)) / CPU_TPS * 1000 ); fflush(stdout);
/* Set the default time step to 1.0f. */
printf( "main: dt_max is %f.\n" , dt_max );
/* Say a few nice things about the space we just created. */
printf( "main: space dimensions are [ %.3f %.3f %.3f ].\n" , s.dim[0] , s.dim[1] , s.dim[2] );
printf( "main: space %s periodic.\n" , s.periodic ? "is" : "isn't" );
printf( "main: highest-level cell dimensions are [ %i %i %i ].\n" , s.cdim[0] , s.cdim[1] , s.cdim[2] );
printf( "main: %i parts in %i cells.\n" , s.nr_parts , s.tot_cells );
printf( "main: maximum depth is %d.\n" , s.maxdepth );
// printf( "main: cutoffs in [ %g %g ].\n" , s.h_min , s.h_max ); fflush(stdout);
/* Verify that each particle is in it's propper cell. */
icount = 0;
space_map_cells_pre( &s , 0 , &map_cellcheck , &icount );
printf( "main: map_cellcheck picked up %i parts.\n" , icount );
data[0] = s.maxdepth; data[1] = 0;
space_map_cells_pre( &s , 0 , &map_maxdepth , data );
printf( "main: nr of cells at depth %i is %i.\n" , data[0] , data[1] );
/* Dump the particle positions. */
// space_map_parts( &s , &map_dump , shift );
/* Initialize the runner with this space. */
tic = getticks();
engine_init( &e , &s , dt_max , nr_threads , nr_queues , ENGINE_POLICY | engine_policy_steal );
printf( "main: engine_init took %.3f ms.\n" , ((double)(getticks() - tic)) / CPU_TPS * 1000 ); fflush(stdout);
/* Write the state of the system as it is before starting time integration. */
tic = getticks();
write_output(&e);
printf( "main: writing particle properties took %.3f ms.\n" , ((double)(getticks() - tic)) / CPU_TPS * 1000 ); fflush(stdout);
/* Init the runner history. */
#ifdef HIST
for ( k = 0 ; k < runner_hist_N ; k++ )
runner_hist_bins[k] = 0;
#endif
/* Let loose a runner on the space. */
for ( j = 0 ; j < runs && e.time < clock ; j++ ) {
printf( "main: starting run %i/%i (t=%.3e) with %i threads and %i queues...\n" , j+1 , runs , e.time , e.nr_threads , e.nr_queues ); fflush(stdout);
timers_reset( timers_mask_all );
#ifdef COUNTER
for ( k = 0 ; k < runner_counter_count ; k++ )
runner_counter[k] = 0;
#endif
/* Take a step. */
engine_step( &e , 0 );
if(j % 100 == 0)
write_output(&e);
/* Dump the first few particles. */
// for(k=0; k<10; ++k)
// printParticle(parts, k);
// printParticle( parts , 6178 , N );
// printParticle( parts , 515150 );
// printParticle( parts , 494849 );
// pairs_single( dim , 432732 , parts , N , periodic );
/* Get the particle with the lowest h. */
/* p = &s.parts[0];
space_map_parts( &s , &map_h_min , &p );
printf( "main: particle %lli/%i at [ %e %e %e ] has minimum h=%.3e (h_dt=%.3e).\n" ,
p->id , (int)(p - s.parts) , p->x[0] , p->x[1] , p->x[2] , p->h , p->force.h_dt ); */
/* Get the particle with the highest h. */
/* p = &s.parts[0];
space_map_parts( &s , &map_h_max , &p );
printf( "main: particle %lli/%i at [ %e %e %e ] has maximum h=%.3e (h_dt=%.3e).\n" ,
p->id , (int)(p - s.parts) , p->x[0] , p->x[1] , p->x[2] , p->h , p->force.h_dt ); */
/* Get the particle with the lowest dt. */
/* p = &s.parts[0];
for ( k = 0 ; k < s.nr_parts ; k++ )
if ( s.parts[k].dt < p->dt )
p = &s.parts[k];
printf( "main: particle %lli/%i at [ %e %e %e ] has smallest dt=%.3e (h=%.3e,u=%.3e).\n" ,
p->id , (int)(p - s.parts) , p->x[0] , p->x[1] , p->x[2] , p->dt , p->h , p->u ); */
/* Output. */
#ifdef TIMER
printf( "main: runner timers are [ %.3f" , timers[0]/CPU_TPS*1000 );
for ( k = 1 ; k < timer_count ; k++ )
printf( " %.3f" , ((double)timers[k])/CPU_TPS*1000 );
printf( " ] ms.\n" );
printf( "main: queue timers are [ %.3f" , queue_timer[0]/CPU_TPS*1000 );
for ( k = 1 ; k < queue_timer_count ; k++ )
printf( " %.3f" , ((double)queue_timer[k])/CPU_TPS*1000 );
for ( k = 0 ; k < queue_timer_count ; k++ )
queue_timer[k] = 0;
printf( " ] ms.\n" );
printf( "main: cell timers are [ %.3f" , cell_timer[0]/CPU_TPS*1000 );
for ( k = 1 ; k < cell_timer_count ; k++ )
printf( " %.3f" , ((double)cell_timer[k])/CPU_TPS*1000 );
for ( k = 0 ; k < cell_timer_count ; k++ )
cell_timer[k] = 0;
printf( " ] ms.\n" );
#else
printf( "main: engine_run with %i threads took %.3f ms.\n" , nr_threads , ((double)(getticks() - tic)) / CPU_TPS * 1000 );
#endif
#ifdef COUNTER
printf( "main: runner counters are [ %d" , runner_counter[0] );
for ( k = 1 ; k < runner_counter_count ; k++ )
printf( " %d" , runner_counter[k] );
printf( " ].\n" );
#endif
printf( "main: engine queue lengths are [ %i" , e.queues[0].count );
for ( k = 1 ; k < e.nr_queues ; k++ )
printf( " %i" , e.queues[k].count );
printf( " ].\n" );
fflush(stdout);
}
/* Print the values of the runner histogram. */
#ifdef HIST
printf( "main: runner histogram data:\n" );
for ( k = 0 ; k < runner_hist_N ; k++ )
printf( " %e %e %e\n" ,
runner_hist_a + k * (runner_hist_b - runner_hist_a) / runner_hist_N ,
runner_hist_a + (k + 1) * (runner_hist_b - runner_hist_a) / runner_hist_N ,
(double)runner_hist_bins[k] );
#endif
/* Loop over the parts directly. */
// for ( k = 0 ; k < N ; k++ )
// printf( " %i %e %e\n" , s.parts[k].id , s.parts[k].count , s.parts[k].count_dh );
/* Get the average interactions per particle. */
rho = 0;
space_map_parts( &s , &map_count , &rho );
printf( "main: average wcount per particle is %.3f.\n" , rho / s.nr_parts );
/* Get the particle with the lowest wcount. */
p = &s.parts[0];
space_map_parts( &s , &map_wcount_min , &p );
printf( "main: particle %lli/%i at [ %e %e %e ] (h=%e) has minimum wcount %.3f.\n" ,
p->id , (int)(p - s.parts) , p->x[0] , p->x[1] , p->x[2] , p->h , p->density.wcount );
/* Get the particle with the highest wcount. */
p = &s.parts[0];
space_map_parts( &s , &map_wcount_max , &p );
printf( "main: particle %lli/%i at [ %e %e %e ] (h=%e) has maximum wcount %.3f.\n" ,
p->id , (int)(p - s.parts) , p->x[0] , p->x[1] , p->x[2] , p->h , p->density.wcount );
/* Get the average interactions per particle. */
// icount = 0;
// space_map_parts( &s , &map_icount , &icount );
// printf( "main: average neighbours per particle is %.3f.\n" , (double)icount / s.nr_parts );
/* Dump the first few particles. */
// for(k=0; k<10; ++k)
// printParticle(parts, k);
/* Get all the cells of a certain depth. */
// icount = 1;
// space_map_cells_pre( &s , 0 , &map_cells_plot , &icount );
/* Check for outliers. */
// space_map_parts( &s , &map_check , NULL );
/* Dump the particle dts. */
// for ( k = 0; k < s.nr_parts ; k++ )
// printf( " %lli %e\n" , s.parts[k].id , s.parts[k].dt );
/* All is calm, all is bright. */
return 0;
}