-
Matthieu Schaller authored
Former-commit-id: 93ecbbfb094246c2c2c64597b7c85b588d9b0b27
Matthieu Schaller authoredFormer-commit-id: 93ecbbfb094246c2c2c64597b7c85b588d9b0b27
test.c 26.44 KiB
/*******************************************************************************
* This file is part of GadgetSMP.
* Coypright (c) 2012 Pedro Gonnet (pedro.gonnet@durham.ac.uk)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
******************************************************************************/
/* Config parameters. */
#include "../config.h"
/* Some standard headers. */
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <pthread.h>
#include <math.h>
#include <omp.h>
/* Conditional headers. */
#ifdef HAVE_LIBZ
#include <zlib.h>
#endif
/* Local headers. */
#include "gadgetsmp.h"
/* Ticks per second on this machine. */
#ifndef CPU_TPS
#define CPU_TPS 2.67e9
#endif
/* Error macro. */
#define error(s) { printf( "%s:%s:%i: %s\n" , __FILE__ , __FUNCTION__ , __LINE__ , s ); abort(); }
/**
* @brief Mapping function to draw a specific cell (gnuplot).
*/
void map_cells_plot ( struct cell *c , void *data ) {
int k, depth = *(int *)data;
double *l = c->loc, *h = c->h;
if ( c->depth >= depth ) {
printf( "%.16e %.16e %.16e\n" , l[0] , l[1] , l[2] );
printf( "%.16e %.16e %.16e\n" , l[0]+h[0] , l[1] , l[2] );
printf( "%.16e %.16e %.16e\n" , l[0]+h[0] , l[1]+h[1] , l[2] );
printf( "%.16e %.16e %.16e\n\n\n" , l[0] , l[1]+h[1] , l[2] );
printf( "%.16e %.16e %.16e\n" , l[0] , l[1] , l[2]+h[2] );
printf( "%.16e %.16e %.16e\n" , l[0]+h[0] , l[1] , l[2]+h[2] );
printf( "%.16e %.16e %.16e\n" , l[0]+h[0] , l[1]+h[1] , l[2]+h[2] );
printf( "%.16e %.16e %.16e\n\n\n" , l[0] , l[1]+h[1] , l[2]+h[2] );
printf( "%.16e %.16e %.16e\n" , l[0] , l[1] , l[2] );
printf( "%.16e %.16e %.16e\n" , l[0] , l[1]+h[1] , l[2] );
printf( "%.16e %.16e %.16e\n" , l[0] , l[1]+h[1] , l[2]+h[2] );
printf( "%.16e %.16e %.16e\n\n\n" , l[0] , l[1] , l[2]+h[2] );
printf( "%.16e %.16e %.16e\n" , l[0]+h[0] , l[1] , l[2] );
printf( "%.16e %.16e %.16e\n" , l[0]+h[0] , l[1]+h[1] , l[2] );
printf( "%.16e %.16e %.16e\n" , l[0]+h[0] , l[1]+h[1] , l[2]+h[2] );
printf( "%.16e %.16e %.16e\n\n\n" , l[0]+h[0] , l[1] , l[2] +h[2]);
printf( "%.16e %.16e %.16e\n" , l[0] , l[1] , l[2] );
printf( "%.16e %.16e %.16e\n" , l[0] , l[1] , l[2]+h[2] );
printf( "%.16e %.16e %.16e\n" , l[0]+h[0] , l[1] , l[2]+h[2] );
printf( "%.16e %.16e %.16e\n\n\n" , l[0]+h[0] , l[1] , l[2] );
printf( "%.16e %.16e %.16e\n" , l[0] , l[1]+h[1] , l[2] );
printf( "%.16e %.16e %.16e\n" , l[0] , l[1]+h[1] , l[2]+h[2] );
printf( "%.16e %.16e %.16e\n" , l[0]+h[0] , l[1]+h[1] , l[2]+h[2] );
printf( "%.16e %.16e %.16e\n\n\n" , l[0]+h[0] , l[1]+h[1] , l[2] );
for ( k = 0 ; k < c->count ; k++ )
printf( "%.16e %.16e %.16e %.16e %.16e %.16e\n" , l[0]+h[0] , l[1]+h[1] , l[2] ,
c->parts[k].x[0] , c->parts[k].x[1] , c->parts[k].x[2] );
printf( "\n\n" );
}
}
/**
* @brief Mapping function for checking if each part is in its box.
*/
/* void map_check ( struct part *p , struct cell *c , void *data ) {
if ( p->x[0] < c->loc[0] || p->x[0] > c->loc[0]+c->h[0] ||
p->x[0] < c->loc[0] || p->x[0] > c->loc[0]+c->h[0] ||
p->x[0] < c->loc[0] || p->x[0] > c->loc[0]+c->h[0] )
printf( "map_check: particle %i is outside of its box.\n" , p->id );
} */
/**
* @brief Mapping function for neighbour count.
*/
void map_cellcheck ( struct cell *c , void *data ) {
int k, *count = (int *)data;
struct part *p;
/* Loop over all parts and check if they are in the cell. */
for ( k = 0 ; k < c->count ; k++ ) {
*count += 1;
p = &c->parts[k];
if ( p->x[0] < c->loc[0] || p->x[1] < c->loc[1] || p->x[2] < c->loc[2] ||
p->x[0] > c->loc[0] + c->h[0] || p->x[1] > c->loc[1] + c->h[1] || p->x[2] > c->loc[2] + c->h[2] ) {
printf( "map_cellcheck: particle at [ %.16e %.16e %.16e ] outside of cell [ %.16e %.16e %.16e ] - [ %.16e %.16e %.16e ].\n" ,
p->x[0] , p->x[1] , p->x[2] ,
c->loc[0] , c->loc[1] , c->loc[2] ,
c->loc[0] + c->h[0] , c->loc[1] + c->h[1] , c->loc[2] + c->h[2] );
error( "particle out of bounds!" );
}
}
}
/**
* @brief Mapping function for maxdepth cell count.
*/
void map_maxdepth ( struct cell *c , void *data ) {
int maxdepth = ((int *)data)[0];
int *count = &((int *)data)[1];
// printf( "%e\n" , p->count );
if ( c->depth == maxdepth )
*count += 1;
}
/**
* @brief Mapping function for neighbour count.
*/
void map_count ( struct part *p , struct cell *c , void *data ) {
double *wcount = (double *)data;
// printf( "%i %e %e\n" , p->id , p->count , p->count_dh );
*wcount += p->wcount;
}
/**
* @brief Mapping function for neighbour count.
*/
void map_icount ( struct part *p , struct cell *c , void *data ) {
int *count = (int *)data;
// printf( "%i\n" , p->icount );
*count += p->icount;
}
/**
* @brief Mapping function to print the particle position.
*/
void map_dump ( struct part *p , struct cell *c , void *data ) {
double *shift = (double *)data;
printf( "%g\t%g\t%g\n" , p->x[0]-shift[0] , p->x[1]-shift[1] , p->x[2]-shift[2] );
}
/**
* @brief Read coordinates from a text file.
*
* @param fname The name of the coordinate file.
* @param parts An array of #part in which to store the coordinates.
* @param N The number of parts to read.
*/
void read_coords ( char *fname , struct part *parts , int N ) {
#ifdef HAVE_LIBZ
gzFile *fd;
char buff[1024];
int k;
/* Open the given file. */
if ( ( fd = gzopen( fname , "r" ) ) == NULL )
error( "Failed to open coordinate file" );
/* Read the coordinates into the part positions. */
for ( k = 0 ; k < N ; k++ ) {
if ( gzgets( fd , buff , 1024 ) == NULL )
error( "Error reading coordinate file." );
if ( sscanf( buff , "%lf %lf %lf" , &parts[k].x[0] , &parts[k].x[1] , &parts[k].x[2] ) != 3 ) {
printf( "read_coords: failed to parse %ith entry.\n" , k );
error( "Error parsing coordinate file." );
}
}
/* Wrap it up. */
gzclose( fd );
#else
FILE *fd;
int k;
/* Open the given file. */
if ( ( fd = fopen( fname , "r" ) ) == NULL )
error( "Failed to open coordinate file" );
/* Read the coordinates into the part positions. */
for ( k = 0 ; k < N ; k++ ) {
if ( fscanf( fd , "%lf %lf %lf" , &parts[k].x[0] , &parts[k].x[1] , &parts[k].x[2] ) != 3 ) {
printf( "read_coords: failed to read %ith entry.\n" , k );
error( "Error reading coordinate file." );
}
}
/* Wrap it up. */
fclose( fd );
#endif
}
/**
* @brief Read cutoffs from a text file.
*
* @param fname The name of the cutoffs file.
* @param parts An array of #part in which to store the cutoffs.
* @param N The number of parts to read.
*/
void read_cutoffs ( char *fname , struct part *parts , int N ) {
#ifdef HAVE_LIBZ
gzFile *fd;
char buff[1024];
int k;
/* Open the given file. */
if ( ( fd = gzopen( fname , "r" ) ) == NULL )
error( "Failed to open cutoff file" );
/* Read the coordinates into the part positions. */
for ( k = 0 ; k < N ; k++ ) {
if ( gzgets( fd , buff , 1024 ) == NULL )
error( "Error reading cutoff file." );
if ( sscanf( buff , "%ef" , &parts[k].h ) != 1 ) {
printf( "read_cutoffs: failed to parse %ith entry.\n" , k );
error( "Error parsing cutoff file." );
}
}
/* Wrap it up. */
gzclose( fd );
#else
FILE *fd;
int k;
/* Open the given file. */
if ( ( fd = fopen( fname , "r" ) ) == NULL )
error( "Failed to open cutoff file" );
/* Read the coordinates into the part positions. */
for ( k = 0 ; k < N ; k++ ) {
if ( fscanf( fd , "%ef" , &parts[k].h ) != 1 ) {
printf( "read_cutoffs: failed to read %ith entry.\n" , k );
error( "Error reading cutoff file." );
}
}
/* Wrap it up. */
fclose( fd );
#endif
}
/**
* @brief Read id from a text file.
*
* @param fname The name of the id file.
* @param parts An array of #part in which to store the dt.
* @param N The number of parts to read.
*/
void read_id ( char *fname , struct part *parts , int N ) {
#ifdef HAVE_LIBZ
gzFile *fd;
char buff[1024];
int k;
/* Open the given file. */
if ( ( fd = gzopen( fname , "r" ) ) == NULL )
error( "Failed to open id file" );
/* Read the coordinates into the part positions. */
for ( k = 0 ; k < N ; k++ ) {
if ( gzgets( fd , buff , 1024 ) == NULL )
error( "Error reading id file." );
if ( sscanf( buff , "%i" , &parts[k].id ) != 1 ) {
printf( "read_id: failed to parse %ith entry.\n" , k );
error( "Error parsing id file." );
}
}
/* Wrap it up. */
gzclose( fd );
#else
FILE *fd;
int k;
/* Open the given file. */
if ( ( fd = fopen( fname , "r" ) ) == NULL )
error( "Failed to open id file" );
/* Read the coordinates into the part positions. */
for ( k = 0 ; k < N ; k++ ) {
if ( fscanf( fd , "%i" , &parts[k].id ) != 1 ) {
printf( "read_id: failed to read %ith entry.\n" , k );
error( "Error reading id file." );
}
}
/* Wrap it up. */
fclose( fd );
#endif
}
/**
* @brief Read dt from a text file.
*
* @param fname The name of the dt file.
* @param parts An array of #part in which to store the dt.
* @param N The number of parts to read.
*/
void read_dt ( char *fname , struct part *parts , int N ) {
#ifdef HAVE_LIBZ
gzFile *fd;
char buff[1024];
int k;
/* Open the given file. */
if ( ( fd = gzopen( fname , "r" ) ) == NULL )
error( "Failed to open dt file" );
/* Read the coordinates into the part positions. */
for ( k = 0 ; k < N ; k++ ) {
if ( gzgets( fd , buff , 1024 ) == NULL )
error( "Error reading id file." );
if ( sscanf( buff , "%i" , &parts[k].dt ) != 1 )
error( "Error parsing dt file." );
}
/* Wrap it up. */
gzclose( fd );
#else
FILE *fd;
int k;
/* Open the given file. */
if ( ( fd = fopen( fname , "r" ) ) == NULL )
error( "Failed to open dt file" );
/* Read the coordinates into the part positions. */
for ( k = 0 ; k < N ; k++ ) {
if ( fscanf( fd , "%ef" , &parts[k].dt ) != 1 )
error( "Error reading dt file." );
}
/* Wrap it up. */
fclose( fd );
#endif
}
/**
* @brief Compute the average number of pairs per particle using
* a brute-force O(N^2) computation.
*
* @param dim The space dimensions.
* @param parts The #part array.
* @param N The number of parts.
* @param periodic Periodic boundary conditions flag.
*/
void pairs_n2 ( double *dim , struct part *__restrict__ parts , int N , int periodic ) {
int i, j, k, count = 0, mj, mk;
double r2, dx[3], rho = 0.0, maxratio = 1.0;
/* Loop over all particle pairs. */
#pragma omp parallel for schedule(dynamic), default(none), private(k,i,dx,r2), shared(maxratio,mj,mk,periodic,parts,dim,N,stdout)
for ( j = 0 ; j < N ; j++ ) {
if ( j % 1000 == 0 ) {
printf( "pairs_n2: j=%i.\n" , j );
fflush(stdout);
}
for ( k = j+1 ; k < N ; k++ ) {
for ( i = 0 ; i < 3 ; i++ ) {
dx[i] = parts[j].x[i] - parts[k].x[i];
if ( periodic ) {
if ( dx[i] < -dim[i]/2 )
dx[i] += dim[i];
else if ( dx[i] > dim[i]/2 )
dx[i] -= dim[i];
}
}
r2 = dx[0]*dx[0] + dx[1]*dx[1] + dx[2]*dx[2];
if ( r2 < parts[j].h*parts[j].h || r2 < parts[k].h*parts[k].h ) {
runner_iact_density( r2 , NULL , parts[j].h , parts[k].h , &parts[j] , &parts[k] );
if ( parts[j].h / parts[k].h > maxratio )
#pragma omp critical
{
maxratio = parts[j].h / parts[k].h;
mj = j; mk = k;
}
else if ( parts[k].h / parts[j].h > maxratio )
#pragma omp critical
{
maxratio = parts[k].h / parts[j].h;
mj = j; mk = k;
}
}
}
}
/* Aggregate the results. */
for ( k = 0 ; k < N ; k++ ) {
count += parts[k].icount;
rho += parts[k].rho;
}
/* Dump the result. */
printf( "pairs_n2: avg. density per part is %.3f (nr. pairs %.3f).\n" , rho/N + 32.0/3 , ((double)count)/N );
printf( "pairs_n2: maximum ratio between parts %i [%e,%e,%e] and %i [%e,%e,%e] is %.3f/%.3f\n" ,
mj , parts[mj].x[0] , parts[mj].x[1] , parts[mj].x[2] ,
mk , parts[mk].x[0] , parts[mk].x[1] , parts[mk].x[2] ,
parts[mj].h , parts[mk].h ); fflush(stdout);
fflush(stdout);
}
/**
* @brief Find the pairs of a single particle
*
* @param dim The space dimensions.
* @param parts The #part array.
* @param N The number of parts.
* @param periodic Periodic boundary conditions flag.
* @param target the index of the target particle.
*/
void pairs_single ( double *dim , struct part *__restrict__ parts , int N , int periodic , int target ) {
int i, k, tid;
double r, tx[3], th, dx[3];
/* Get the target position and radius. */
for ( k = 0 ; k < 3 ; k++ )
tx[k] = parts[target].x[k];
th = parts[target].h;
tid = parts[target].id;
/* Loop over all particle pairs. */
#pragma omp parallel for schedule(dynamic), default(none), private(k,i,dx,r), shared(target,tx,th,tid,periodic,parts,dim,N)
for ( k = 0 ; k < N ; k++ ) {
if ( k == target )
continue;
for ( i = 0 ; i < 3 ; i++ ) {
dx[i] = tx[i] - parts[k].x[i];
if ( periodic ) {
if ( dx[i] < -dim[i]/2 )
dx[i] += dim[i];
else if ( dx[i] > dim[i]/2 )
dx[i] -= dim[i];
}
}
r = sqrt( dx[0]*dx[0] + dx[1]*dx[1] + dx[2]*dx[2] );
if ( r < th )
printf( "pairs_single: %i %i [%e,%e,%e] %e\n" ,
tid , parts[k].id , dx[0] , dx[1] , dx[2] , r );
}
}
/**
* @brief Test the kernel function by dumping it in the interval [0,1].
*
* @param N number of intervals in [0,1].
*/
void kernel_dump ( int N ) {
int k;
float x, w, dw_dx;
for ( k = 0 ; k <= N ; k++ ) {
x = ((float)k) / N * kernel_igamma;
kernel_deval( x , &w , &dw_dx );
printf( " %e %e %e\n" , x , w , dw_dx );
}
}
/**
* @brief Main routine that loads a few particles and generates some output.
*
*/
int main ( int argc , char *argv[] ) {
int c, icount, j, k, N = 100, periodic = 1;
int nr_threads = 1, nr_queues = -1, runs = 1;
int data[2];
double dim[3] = { 1.0 , 1.0 , 1.0 }, shift[3] = { 0.0 , 0.0 , 0.0 };
double r_min = 0.01, r_max = 0.1, h_max = -1.0 , scaling = 1.0, rho = 0.0;
struct part *parts = NULL;
struct space s;
struct runner r;
ticks tic;
/* Init the space. */
bzero( &s , sizeof(struct space) );
/* Parse the options. */
while ( ( c = getopt( argc , argv , "a:b:p:d:N:c:h:v:m:s:t:q:r:i:m:z:" ) ) != -1 )
switch ( c ) {
case 'N':
if ( sscanf( optarg , "%d" , &N ) != 1 )
error( "Error parsing number of particles." );
if ( posix_memalign( (void *)&parts , 16 , N * sizeof(struct part) ) != 0 )
error( "Call to posix_memalign failed." );
for ( k = 0 ; k < N ; k++ ) {
parts[k].x[0] = ((double)rand()) / RAND_MAX * dim[0];
parts[k].x[1] = ((double)rand()) / RAND_MAX * dim[1];
parts[k].x[2] = ((double)rand()) / RAND_MAX * dim[2];
parts[k].id = k;
parts[k].h = r_min + ((r_max - r_min)*rand())/RAND_MAX;
parts[k].mass = 1.0;
}
printf( "main: allocated memory for %i parts.\n" , N ); fflush(stdout);
break;
case 'a':
if ( sscanf( optarg , "%lf" , &scaling ) != 1 )
error( "Error parsing cutoff scaling." );
printf( "main: scaling cutoff by %.3f.\n" , scaling ); fflush(stdout);
for ( k = 0 ; k < N ; k++ )
parts[k].h *= scaling;
break;
case 'b':
if ( sscanf( optarg , "%lf %lf %lf" , &dim[0] , &dim[1] , &dim[2] ) != 3 )
error( "Error parsing box dimensions." );
break;
case 'c':
printf( "main: reading parts from %s...\n" , optarg ); fflush(stdout);
if ( parts == NULL && posix_memalign( (void *)&parts , 16 , N * sizeof(struct part) ) != 0 )
error( "Call to calloc failed." );
read_coords( optarg , parts , N );
break;
case 'd':
printf( "main: reading dt from %s...\n" , optarg ); fflush(stdout);
read_dt( optarg , parts , N );
break;
case 'h':
printf( "main: reading cutoffs from %s...\n" , optarg ); fflush(stdout);
read_cutoffs( optarg , parts , N );
break;
case 'i':
printf( "main: reading ids from %s...\n" , optarg ); fflush(stdout);
read_id( optarg , parts , N );
break;
case 'm':
if ( sscanf( optarg , "%lf" , &h_max ) != 1 )
error( "Error parsing h_max." );
printf( "main: maximum h set to %e.\n" , h_max );
break;
case 'p':
if ( sscanf( optarg , "%d" , &periodic ) != 1 )
error( "Error parsing periodicity." );
printf( "main: periodicity switched %s.\n" , periodic ? "on" : "off" );
break;
case 'q':
if ( sscanf( optarg , "%d" , &nr_queues ) != 1 )
error( "Error parsing number of queues." );
break;
case 'r':
if ( sscanf( optarg , "%d" , &runs ) != 1 )
error( "Error parsing number of runs." );
break;
case 's':
if ( sscanf( optarg , "%lf %lf %lf" , &shift[0] , &shift[1] , &shift[2] ) != 3 )
error( "Error parsing shift." );
for ( k = 0 ; k < N ; k++ ) {
parts[k].x[0] += shift[0];
parts[k].x[1] += shift[1];
parts[k].x[2] += shift[2];
}
printf( "main: shifted parts by [ %.3f %.3f %.3f ].\n" , shift[0] , shift[1] , shift[2] );
break;
case 't':
if ( sscanf( optarg , "%d" , &nr_threads ) != 1 )
error( "Error parsing number of threads." );
omp_set_num_threads( nr_threads );
break;
case 'z':
if ( sscanf( optarg , "%d" , &space_splitsize ) != 1 )
error( "Error parsing split size." );
printf( "main: split size set to %i.\n" , space_splitsize );
break;
case '?':
error( "Unknown option." );
break;
}
/* How large are the parts? */
printf( "main: sizeof(struct part) is %li bytes.\n" , sizeof( struct part ) );
/* Dump the kernel to make sure its ok. */
// kernel_dump( 100 );
/* Get the brute-force number of pairs. */
// pairs_n2( dim , parts , N , periodic );
// pairs_single( dim , parts , N , periodic , 63628 );
fflush( stdout );
/* Set default number of queues. */
if ( nr_queues < 0 )
nr_queues = nr_threads;
/* Initialize the space with this data. */
tic = getticks();
space_init( &s , dim , parts , N , periodic , h_max );
printf( "main: space_init took %.3f ms.\n" , ((double)(getticks() - tic)) / CPU_TPS * 1000 ); fflush(stdout);
/* Say a few nice things about the space we just created. */
printf( "main: space dimensions are [ %.3f %.3f %.3f ].\n" , s.dim[0] , s.dim[1] , s.dim[2] );
printf( "main: space %s periodic.\n" , s.periodic ? "is" : "isn't" );
printf( "main: highest-level cell dimensions are [ %i %i %i ].\n" , s.cdim[0] , s.cdim[1] , s.cdim[2] );
printf( "main: %i parts in %i cells.\n" , s.nr_parts , s.tot_cells );
printf( "main: maximum depth is %d.\n" , s.maxdepth );
printf( "main: cutoffs in [ %.3f %.3f ].\n" , s.h_min , s.h_max ); fflush(stdout);
/* Verify that each particle is in it's propper cell. */
// icount = 0;
// space_map_cells( &s , &map_cellcheck , &icount );
// printf( "main: map_cellcheck picked up %i parts.\n" , icount );
data[0] = s.maxdepth; data[1] = 0;
space_map_cells( &s , 0 , &map_maxdepth , data );
printf( "main: nr of cells at depth %i is %i.\n" , data[0] , data[1] );
/* Dump the particle positions. */
// space_map_parts( &s , &map_dump , shift );
/* Generate the tasks. */
tic = getticks();
space_maketasks( &s , 1 );
printf( "main: generated %i tasks.\n" , s.nr_tasks );
printf( "main: space_maketasks took %.3f ms.\n" , ((double)(getticks() - tic)) / CPU_TPS * 1000 ); fflush(stdout);
/* Initialize the runner with this space. */
tic = getticks();
runner_init( &r , &s , nr_threads , nr_queues , runner_policy_steal | runner_policy_keep );
printf( "main: runner_init took %.3f ms.\n" , ((double)(getticks() - tic)) / CPU_TPS * 1000 ); fflush(stdout);
/* Init the runner history. */
#ifdef HIST
for ( k = 0 ; k < runner_hist_N ; k++ )
runner_hist_bins[k] = 0;
#endif
/* Let loose a runner on the space. */
for ( j = 0 ; j < runs ; j++ ) {
printf( "main: starting run %i/%i with %i threads and %i queues...\n" , j+1 , runs , r.nr_threads , r.nr_queues ); fflush(stdout);
tic = getticks();
#ifdef TIMER
for ( k = 0 ; k < runner_timer_count ; k++ )
runner_timer[k] = 0;
for ( k = 0 ; k < queue_timer_count ; k++ )
queue_timer[k] = 0;
for ( k = 0 ; k < cell_timer_count ; k++ )
cell_timer[k] = 0;
#endif
#ifdef COUNTER
for ( k = 0 ; k < runner_counter_count ; k++ )
runner_counter[k] = 0;
#endif
runner_run( &r , 0 );
#ifdef TIMER
printf( "main: runner timers are [ %.3f" , runner_timer[0]/CPU_TPS*1000 );
for ( k = 1 ; k < runner_timer_count ; k++ )
printf( " %.3f" , ((double)runner_timer[k])/CPU_TPS*1000 );
printf( " %.3f ] ms.\n" , ((double)(getticks() - tic)) / CPU_TPS * 1000 );
printf( "main: queue timers are [ %.3f" , queue_timer[0]/CPU_TPS*1000 );
for ( k = 1 ; k < queue_timer_count ; k++ )
printf( " %.3f" , ((double)queue_timer[k])/CPU_TPS*1000 );
printf( " ] ms.\n" );
printf( "main: cell timers are [ %.3f" , cell_timer[0]/CPU_TPS*1000 );
for ( k = 1 ; k < cell_timer_count ; k++ )
printf( " %.3f" , ((double)cell_timer[k])/CPU_TPS*1000 );
printf( " ] ms.\n" );
#else
printf( "main: runner_run with %i threads took %.3f ms.\n" , nr_threads , ((double)(getticks() - tic)) / CPU_TPS * 1000 );
#endif
#ifdef COUNTER
printf( "main: runner counters are [ %d" , runner_counter[0] );
for ( k = 1 ; k < runner_counter_count ; k++ )
printf( " %d" , runner_counter[k] );
printf( " ].\n" );
#endif
printf( "main: runner queue lengths are [ %i" , r.queues[0].count );
for ( k = 1 ; k < r.nr_queues ; k++ )
printf( " %i" , r.queues[k].count );
printf( " ].\n" );
fflush(stdout);
}
/* Print the values of the runner histogram. */
#ifdef HIST
printf( "main: runner histogram data:\n" );
for ( k = 0 ; k < runner_hist_N ; k++ )
printf( " %e %e %e\n" ,
runner_hist_a + k * (runner_hist_b - runner_hist_a) / runner_hist_N ,
runner_hist_a + (k + 1) * (runner_hist_b - runner_hist_a) / runner_hist_N ,
(double)runner_hist_bins[k] );
#endif
/* Loop over the parts directly. */
// for ( k = 0 ; k < N ; k++ )
// printf( " %i %e %e\n" , s.parts[k].id , s.parts[k].count , s.parts[k].count_dh );
/* Get the average interactions per particle. */
rho = 0;
space_map_parts( &s , &map_count , &rho );
printf( "main: average wcount per particle is %.3f.\n" , rho / s.nr_parts / runs + 32.0/3 );
/* Get the average interactions per particle. */
icount = 0;
space_map_parts( &s , &map_icount , &icount );
printf( "main: average neighbours per particle is %.3f.\n" , (double)icount / s.nr_parts / runs );
/* Get all the cells of a certain depth. */
/* count = 11;
space_map_cells( &s , &map_cells_plot , &count ); */
/* Check for outliers. */
// space_map_parts( &s , &map_check , NULL );
/* All is calm, all is bright. */
return 0;
}