Skip to content
Snippets Groups Projects
serial_io.c 36.03 KiB
/*******************************************************************************
 * This file is part of SWIFT.
 * Copyright (c) 2012 Pedro Gonnet (pedro.gonnet@durham.ac.uk),
 *                    Matthieu Schaller (matthieu.schaller@durham.ac.uk).
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published
 * by the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 *
 ******************************************************************************/

/* Config parameters. */
#include "../config.h"

#if defined(HAVE_HDF5) && defined(WITH_MPI) && !defined(HAVE_PARALLEL_HDF5)

/* Some standard headers. */
#include <hdf5.h>
#include <math.h>
#include <mpi.h>
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

/* This object's header. */
#include "serial_io.h"

/* Local includes. */
#include "common_io.h"
#include "dimension.h"
#include "engine.h"
#include "error.h"
#include "gravity_io.h"
#include "gravity_properties.h"
#include "hydro_io.h"
#include "hydro_properties.h"
#include "io_properties.h"
#include "kernel_hydro.h"
#include "part.h"
#include "stars_io.h"
#include "units.h"
#include "xmf.h"

/*-----------------------------------------------------------------------------
 * Routines reading an IC file
 *-----------------------------------------------------------------------------*/

/**
 * @brief Reads a data array from a given HDF5 group.
 *
 * @param grp The group from which to read.
 * @param name The name of the array to read.
 * @param type The #DATA_TYPE of the attribute.
 * @param N The number of particles.
 * @param dim The dimension of the data (1 for scalar, 3 for vector)
 * @param part_c A (char*) pointer on the first occurrence of the field of
 *interest in the parts array
 * @param partSize The size in bytes of the particle structure.
 * @param importance If COMPULSORY, the data must be present in the IC file. If
 *OPTIONAL, the array will be zeroed when the data is not present.
 *
 * @todo A better version using HDF5 hyper-slabs to read the file directly into
 *the part array
 * will be written once the structures have been stabilized.
 */
void readArray(hid_t grp, const struct io_props props, size_t N,
               long long N_total, long long offset,
               const struct unit_system* internal_units,
               const struct unit_system* ic_units) {

  const size_t typeSize = io_sizeof_type(props.type);
  const size_t copySize = typeSize * props.dimension;
  const size_t num_elements = N * props.dimension;

  /* Check whether the dataspace exists or not */
  const htri_t exist = H5Lexists(grp, props.name, 0);
  if (exist < 0) {
    error("Error while checking the existence of data set '%s'.", props.name);
  } else if (exist == 0) {
    if (props.importance == COMPULSORY) {
      error("Compulsory data set '%s' not present in the file.", props.name);
    } else {
      for (size_t i = 0; i < N; ++i)
        memset(props.field + i * props.partSize, 0, copySize);
      return;
    }
  }

  /* message( "Reading %s '%s' array...", importance == COMPULSORY ? */
  /* 	   "compulsory": "optional  ", name); */
  /* fflush(stdout); */

  /* Open data space */
  const hid_t h_data = H5Dopen(grp, props.name, H5P_DEFAULT);
  if (h_data < 0) error("Error while opening data space '%s'.", props.name);

  /* Check data type */
  const hid_t h_type = H5Dget_type(h_data);
  if (h_type < 0) error("Unable to retrieve data type from the file");
  /* if (!H5Tequal(h_type, hdf5_type(type))) */
  /*   error("Non-matching types between the code and the file"); */

  /* Allocate temporary buffer */
  void* temp = malloc(num_elements * typeSize);
  if (temp == NULL) error("Unable to allocate memory for temporary buffer");

  /* Prepare information for hyper-slab */
  hsize_t shape[2], offsets[2];
  int rank;
  if (props.dimension > 1) {
    rank = 2;
    shape[0] = N;
    shape[1] = props.dimension;
    offsets[0] = offset;
    offsets[1] = 0;
  } else {
    rank = 2;
    shape[0] = N;
    shape[1] = 1;
    offsets[0] = offset;
    offsets[1] = 0;
  }

  /* Create data space in memory */
  const hid_t h_memspace = H5Screate_simple(rank, shape, NULL);

  /* Select hyper-slab in file */
  const hid_t h_filespace = H5Dget_space(h_data);
  H5Sselect_hyperslab(h_filespace, H5S_SELECT_SET, offsets, NULL, shape, NULL);
  /* Read HDF5 dataspace in temporary buffer */
  /* Dirty version that happens to work for vectors but should be improved */
  /* Using HDF5 dataspaces would be better */
  const hid_t h_err = H5Dread(h_data, io_hdf5_type(props.type), h_memspace,
                              h_filespace, H5P_DEFAULT, temp);
  if (h_err < 0) {
    error("Error while reading data array '%s'.", props.name);
  }

  /* Unit conversion if necessary */
  const double factor =
      units_conversion_factor(ic_units, internal_units, props.units);
  if (factor != 1. && exist != 0) {

    /* message("Converting ! factor=%e", factor); */

    if (io_is_double_precision(props.type)) {
      double* temp_d = temp;
      for (size_t i = 0; i < num_elements; ++i) temp_d[i] *= factor;
    } else {
      float* temp_f = temp;
      for (size_t i = 0; i < num_elements; ++i) temp_f[i] *= factor;
    }
  }

  /* Copy temporary buffer to particle data */
  char* temp_c = temp;
  for (size_t i = 0; i < N; ++i)
    memcpy(props.field + i * props.partSize, &temp_c[i * copySize], copySize);

  /* Free and close everything */
  free(temp);
  H5Sclose(h_filespace);
  H5Sclose(h_memspace);
  H5Tclose(h_type);
  H5Dclose(h_data);
}

/*-----------------------------------------------------------------------------
 * Routines writing an output file
 *-----------------------------------------------------------------------------*/

void prepareArray(struct engine* e, hid_t grp, char* fileName, FILE* xmfFile,
                  char* partTypeGroupName, const struct io_props props,
                  unsigned long long N_total,
                  const struct unit_system* internal_units,
                  const struct unit_system* snapshot_units) {

  /* Create data space */
  const hid_t h_space = H5Screate(H5S_SIMPLE);
  if (h_space < 0) {
    error("Error while creating data space for field '%s'.", props.name);
  }

  int rank = 0;
  hsize_t shape[2];
  hsize_t chunk_shape[2];
  if (props.dimension > 1) {
    rank = 2;
    shape[0] = N_total;
    shape[1] = props.dimension;
    chunk_shape[0] = 1 << 16; /* Just a guess...*/
    chunk_shape[1] = props.dimension;
  } else {
    rank = 1;
    shape[0] = N_total;
    shape[1] = 0;
    chunk_shape[0] = 1 << 16; /* Just a guess...*/
    chunk_shape[1] = 0;
  }

  /* Make sure the chunks are not larger than the dataset */
  if (chunk_shape[0] > N_total) chunk_shape[0] = N_total;

  /* Change shape of data space */
  hid_t h_err = H5Sset_extent_simple(h_space, rank, shape, NULL);
  if (h_err < 0) {
    error("Error while changing data space shape for field '%s'.", props.name);
  }

  /* Dataset properties */
  const hid_t h_prop = H5Pcreate(H5P_DATASET_CREATE);

  /* Set chunk size */
  h_err = H5Pset_chunk(h_prop, rank, chunk_shape);
  if (h_err < 0) {
    error("Error while setting chunk size (%llu, %llu) for field '%s'.",
          chunk_shape[0], chunk_shape[1], props.name);
  }

  /* Impose data compression */
  if (e->snapshotCompression > 0) {
    h_err = H5Pset_deflate(h_prop, e->snapshotCompression);
    if (h_err < 0) {
      error("Error while setting compression options for field '%s'.",
            props.name);
    }
  }

  /* Create dataset */
  const hid_t h_data = H5Dcreate(grp, props.name, io_hdf5_type(props.type),
                                 h_space, H5P_DEFAULT, h_prop, H5P_DEFAULT);
  if (h_data < 0) {
    error("Error while creating dataspace '%s'.", props.name);
  }

  /* Write XMF description for this data set */
  xmf_write_line(xmfFile, fileName, partTypeGroupName, props.name, N_total,
                 props.dimension, props.type);

  /* Write unit conversion factors for this data set */
  char buffer[FIELD_BUFFER_SIZE];
  units_cgs_conversion_string(buffer, snapshot_units, props.units);
  io_write_attribute_d(
      h_data, "CGS conversion factor",
      units_cgs_conversion_factor(snapshot_units, props.units));
  io_write_attribute_f(h_data, "h-scale exponent",
                       units_h_factor(snapshot_units, props.units));
  io_write_attribute_f(h_data, "a-scale exponent",
                       units_a_factor(snapshot_units, props.units));
  io_write_attribute_s(h_data, "Conversion factor", buffer);

  /* Close everything */
  H5Pclose(h_prop);
  H5Dclose(h_data);
  H5Sclose(h_space);
}

/**
 * @brief Writes a data array in given HDF5 group.
 *
 * @param e The #engine we are writing from.
 * @param grp The group in which to write.
 * @param fileName The name of the file in which the data is written
 * @param xmfFile The FILE used to write the XMF description
 * @param partTypeGroupName The name of the group containing the particles in
 *the HDF5 file.
 * @param name The name of the array to write.
 * @param type The #DATA_TYPE of the array.
 * @param N The number of particles to write.
 * @param dim The dimension of the data (1 for scalar, 3 for vector)
 * @param part_c A (char*) pointer on the first occurrence of the field of
 *interest in the parts array
 * @param partSize The size in bytes of the particle structure.
 * @param us The unit_system currently in use
 * @param convFactor The UnitConversionFactor for this arrayo
 */
void writeArray(struct engine* e, hid_t grp, char* fileName, FILE* xmfFile,
                char* partTypeGroupName, const struct io_props props, size_t N,
                long long N_total, int mpi_rank, long long offset,
                const struct unit_system* internal_units,
                const struct unit_system* snapshot_units) {

  const size_t typeSize = io_sizeof_type(props.type);
  const size_t copySize = typeSize * props.dimension;
  const size_t num_elements = N * props.dimension;

  /* message("Writing '%s' array...", props.name); */

  /* Prepare the arrays in the file */
  if (mpi_rank == 0)
    prepareArray(e, grp, fileName, xmfFile, partTypeGroupName, props, N_total,
                 internal_units, snapshot_units);

  /* Allocate temporary buffer */
  void* temp = malloc(num_elements * io_sizeof_type(props.type));
  if (temp == NULL) error("Unable to allocate memory for temporary buffer");

  /* Copy particle data to temporary buffer */
  if (props.convert_part == NULL &&
      props.convert_gpart == NULL) { /* No conversion */

    char* temp_c = temp;
    for (size_t i = 0; i < N; ++i)
      memcpy(&temp_c[i * copySize], props.field + i * props.partSize, copySize);

  } else if (props.convert_part != NULL) { /* conversion (for parts)*/

    float* temp_f = temp;
    for (size_t i = 0; i < N; ++i)
      temp_f[i] = props.convert_part(e, &props.parts[i]);

  } else if (props.convert_gpart != NULL) { /* conversion (for gparts)*/

    float* temp_f = temp;
    for (size_t i = 0; i < N; ++i)
      temp_f[i] = props.convert_gpart(e, &props.gparts[i]);
  }

  /* Unit conversion if necessary */
  const double factor =
      units_conversion_factor(internal_units, snapshot_units, props.units);
  if (factor != 1.) {

    /* message("Converting ! factor=%e", factor); */

    if (io_is_double_precision(props.type)) {
      double* temp_d = temp;
      for (size_t i = 0; i < num_elements; ++i) temp_d[i] *= factor;
    } else {
      float* temp_f = temp;
      for (size_t i = 0; i < num_elements; ++i) temp_f[i] *= factor;
    }
  }

  /* Construct information for the hyper-slab */
  int rank;
  hsize_t shape[2];
  hsize_t offsets[2];
  if (props.dimension > 1) {
    rank = 2;
    shape[0] = N;
    shape[1] = props.dimension;
    offsets[0] = offset;
    offsets[1] = 0;
  } else {
    rank = 1;
    shape[0] = N;
    shape[1] = 0;
    offsets[0] = offset;
    offsets[1] = 0;
  }

  /* Create data space in memory */
  const hid_t h_memspace = H5Screate(H5S_SIMPLE);
  if (h_memspace < 0)
    error("Error while creating data space (memory) for field '%s'.",
          props.name);

  /* Change shape of memory data space */
  hid_t h_err = H5Sset_extent_simple(h_memspace, rank, shape, NULL);
  if (h_err < 0)
    error("Error while changing data space (memory) shape for field '%s'.",
          props.name);

  /* Open pre-existing data set */
  const hid_t h_data = H5Dopen(grp, props.name, H5P_DEFAULT);
  if (h_data < 0) error("Error while opening dataset '%s'.", props.name);

  /* Select data space in that data set */
  const hid_t h_filespace = H5Dget_space(h_data);
  H5Sselect_hyperslab(h_filespace, H5S_SELECT_SET, offsets, NULL, shape, NULL);

  /* Write temporary buffer to HDF5 dataspace */
  h_err = H5Dwrite(h_data, io_hdf5_type(props.type), h_memspace, h_filespace,
                   H5P_DEFAULT, temp);
  if (h_err < 0) error("Error while writing data array '%s'.", props.name);

  /* Free and close everything */
  free(temp);
  H5Dclose(h_data);
  H5Sclose(h_memspace);
  H5Sclose(h_filespace);
}

/**
 * @brief Reads an HDF5 initial condition file (GADGET-3 type)
 *
 * @param fileName The file to read.
 * @param internal_units The system units used internally
 * @param dim (output) The dimension of the volume read from the file.
 * @param parts (output) The array of #part (gas particles) read from the file.
 * @param gparts (output) The array of #gpart read from the file.
 * @param sparts (output) Array of #spart particles.
 * @param Ngas (output) The number of #part read from the file on that node.
 * @param Ngparts (output) The number of #gpart read from the file on that node.
 * @param Nstars (output) The number of #spart read from the file on that node.
 * @param periodic (output) 1 if the volume is periodic, 0 if not.
 * @param flag_entropy (output) 1 if the ICs contained Entropy in the
 * InternalEnergy field
 * @param with_hydro Are we reading gas particles ?
 * @param with_gravity Are we reading/creating #gpart arrays ?
 * @param with_stars Are we reading star particles ?
 * @param mpi_rank The MPI rank of this node
 * @param mpi_size The number of MPI ranks
 * @param comm The MPI communicator
 * @param info The MPI information object
 * @param dry_run If 1, don't read the particle. Only allocates the arrays.
 *
 * Opens the HDF5 file fileName and reads the particles contained
 * in the parts array. N is the returned number of particles found
 * in the file.
 *
 * @warning Can not read snapshot distributed over more than 1 file !!!
 * @todo Read snapshots distributed in more than one file.
 *
 */
void read_ic_serial(char* fileName, const struct unit_system* internal_units,
                    double dim[3], struct part** parts, struct gpart** gparts,
                    struct spart** sparts, size_t* Ngas, size_t* Ngparts,
                    size_t* Nstars, int* periodic, int* flag_entropy,
                    int with_hydro, int with_gravity, int with_stars,
                    int mpi_rank, int mpi_size, MPI_Comm comm, MPI_Info info,
                    int dry_run) {

  hid_t h_file = 0, h_grp = 0;
  /* GADGET has only cubic boxes (in cosmological mode) */
  double boxSize[3] = {0.0, -1.0, -1.0};
  /* GADGET has 6 particle types. We only keep the type 0 & 1 for now*/
  long long numParticles[swift_type_count] = {0};
  long long numParticles_highWord[swift_type_count] = {0};
  size_t N[swift_type_count] = {0};
  long long N_total[swift_type_count] = {0};
  long long offset[swift_type_count] = {0};
  int dimension = 3; /* Assume 3D if nothing is specified */
  size_t Ndm = 0;
  struct unit_system* ic_units = malloc(sizeof(struct unit_system));

  /* First read some information about the content */
  if (mpi_rank == 0) {

    /* Open file */
    /* message("Opening file '%s' as IC.", fileName); */
    h_file = H5Fopen(fileName, H5F_ACC_RDONLY, H5P_DEFAULT);
    if (h_file < 0)
      error("Error while opening file '%s' for initial read.", fileName);

    /* Open header to read simulation properties */
    /* message("Reading runtime parameters..."); */
    h_grp = H5Gopen(h_file, "/RuntimePars", H5P_DEFAULT);
    if (h_grp < 0) error("Error while opening runtime parameters\n");

    /* Read the relevant information */
    io_read_attribute(h_grp, "PeriodicBoundariesOn", INT, periodic);

    /* Close runtime parameters */
    H5Gclose(h_grp);

    /* Open header to read simulation properties */
    /* message("Reading file header..."); */
    h_grp = H5Gopen(h_file, "/Header", H5P_DEFAULT);
    if (h_grp < 0) error("Error while opening file header\n");

    /* Check the dimensionality of the ICs (if the info exists) */
    const hid_t hid_dim = H5Aexists(h_grp, "Dimension");
    if (hid_dim < 0)
      error("Error while testing existance of 'Dimension' attribute");
    if (hid_dim > 0) io_read_attribute(h_grp, "Dimension", INT, &dimension);
    if (dimension != hydro_dimension)
      error("ICs dimensionality (%dD) does not match code dimensionality (%dD)",
            dimension, (int)hydro_dimension);

    /* Read the relevant information and print status */
    int flag_entropy_temp[6];
    io_read_attribute(h_grp, "Flag_Entropy_ICs", INT, flag_entropy_temp);
    *flag_entropy = flag_entropy_temp[0];
    io_read_attribute(h_grp, "BoxSize", DOUBLE, boxSize);
    io_read_attribute(h_grp, "NumPart_Total", LONGLONG, numParticles);
    io_read_attribute(h_grp, "NumPart_Total_HighWord", LONGLONG,
                      numParticles_highWord);

    for (int ptype = 0; ptype < swift_type_count; ++ptype)
      N_total[ptype] =
          (numParticles[ptype]) + (numParticles_highWord[ptype] << 32);

    dim[0] = boxSize[0];
    dim[1] = (boxSize[1] < 0) ? boxSize[0] : boxSize[1];
    dim[2] = (boxSize[2] < 0) ? boxSize[0] : boxSize[2];

    /* message("Found %lld particles in a %speriodic box of size [%f %f %f].",
     */
    /* 	    N_total, (periodic ? "": "non-"), dim[0], dim[1], dim[2]); */

    fflush(stdout);

    /* Close header */
    H5Gclose(h_grp);

    /* Read the unit system used in the ICs */
    if (ic_units == NULL) error("Unable to allocate memory for IC unit system");
    io_read_unit_system(h_file, ic_units);

    if (units_are_equal(ic_units, internal_units)) {

      message("IC and internal units match. No conversion needed.");

    } else {

      message("Conversion needed from:");
      message("(ICs) Unit system: U_M =      %e g.", ic_units->UnitMass_in_cgs);
      message("(ICs) Unit system: U_L =      %e cm.",
              ic_units->UnitLength_in_cgs);
      message("(ICs) Unit system: U_t =      %e s.", ic_units->UnitTime_in_cgs);
      message("(ICs) Unit system: U_I =      %e A.",
              ic_units->UnitCurrent_in_cgs);
      message("(ICs) Unit system: U_T =      %e K.",
              ic_units->UnitTemperature_in_cgs);
      message("to:");
      message("(internal) Unit system: U_M = %e g.",
              internal_units->UnitMass_in_cgs);
      message("(internal) Unit system: U_L = %e cm.",
              internal_units->UnitLength_in_cgs);
      message("(internal) Unit system: U_t = %e s.",
              internal_units->UnitTime_in_cgs);
      message("(internal) Unit system: U_I = %e A.",
              internal_units->UnitCurrent_in_cgs);
      message("(internal) Unit system: U_T = %e K.",
              internal_units->UnitTemperature_in_cgs);
    }

    /* Close file */
    H5Fclose(h_file);
  }

  /* Convert the dimensions of the box */
  for (int j = 0; j < 3; j++)
    dim[j] *=
        units_conversion_factor(ic_units, internal_units, UNIT_CONV_LENGTH);

  /* Now need to broadcast that information to all ranks. */
  MPI_Bcast(flag_entropy, 1, MPI_INT, 0, comm);
  MPI_Bcast(periodic, 1, MPI_INT, 0, comm);
  MPI_Bcast(&N_total, swift_type_count, MPI_LONG_LONG_INT, 0, comm);
  MPI_Bcast(dim, 3, MPI_DOUBLE, 0, comm);
  MPI_Bcast(ic_units, sizeof(struct unit_system), MPI_BYTE, 0, comm);

  /* Divide the particles among the tasks. */
  for (int ptype = 0; ptype < swift_type_count; ++ptype) {
    offset[ptype] = mpi_rank * N_total[ptype] / mpi_size;
    N[ptype] = (mpi_rank + 1) * N_total[ptype] / mpi_size - offset[ptype];
  }

  /* Allocate memory to store SPH particles */
  if (with_hydro) {
    *Ngas = N[0];
    if (posix_memalign((void*)parts, part_align, *Ngas * sizeof(struct part)) !=
        0)
      error("Error while allocating memory for SPH particles");
    bzero(*parts, *Ngas * sizeof(struct part));
  }

  /* Allocate memory to store star particles */
  if (with_stars) {
    *Nstars = N[swift_type_star];
    if (posix_memalign((void*)sparts, spart_align,
                       *Nstars * sizeof(struct spart)) != 0)
      error("Error while allocating memory for star particles");
    bzero(*sparts, *Nstars * sizeof(struct spart));
  }

  /* Allocate memory to store all gravity  particles */
  if (with_gravity) {
    Ndm = N[1];
    *Ngparts = (with_hydro ? N[swift_type_gas] : 0) +
               N[swift_type_dark_matter] +
               (with_stars ? N[swift_type_star] : 0);
    if (posix_memalign((void*)gparts, gpart_align,
                       *Ngparts * sizeof(struct gpart)) != 0)
      error("Error while allocating memory for gravity particles");
    bzero(*gparts, *Ngparts * sizeof(struct gpart));
  }

  /* message("Allocated %8.2f MB for particles.", *N * sizeof(struct part) / */
  /* 	  (1024.*1024.)); */
  /* message("BoxSize = %lf", dim[0]); */
  /* message("NumPart = [%zd, %zd] Total = %zd", *Ngas, Ndm, *Ngparts); */

  /* For dry runs, only need to do this on rank 0 */
  if (dry_run) mpi_size = 1;

  /* Now loop over ranks and read the data */
  for (int rank = 0; rank < mpi_size; ++rank) {

    /* Is it this rank's turn to read ? */
    if (rank == mpi_rank) {

      h_file = H5Fopen(fileName, H5F_ACC_RDONLY, H5P_DEFAULT);
      if (h_file < 0)
        error("Error while opening file '%s' on rank %d.", fileName, mpi_rank);

      /* Loop over all particle types */
      for (int ptype = 0; ptype < swift_type_count; ptype++) {

        /* Don't do anything if no particle of this kind */
        if (N[ptype] == 0) continue;

        /* Open the particle group in the file */
        char partTypeGroupName[PARTICLE_GROUP_BUFFER_SIZE];
        snprintf(partTypeGroupName, PARTICLE_GROUP_BUFFER_SIZE, "/PartType%d",
                 ptype);
        h_grp = H5Gopen(h_file, partTypeGroupName, H5P_DEFAULT);
        if (h_grp < 0) {
          error("Error while opening particle group %s.", partTypeGroupName);
        }

        int num_fields = 0;
        struct io_props list[100];
        size_t Nparticles = 0;

        /* Read particle fields into the particle structure */
        switch (ptype) {

          case swift_type_gas:
            if (with_hydro) {
              Nparticles = *Ngas;
              hydro_read_particles(*parts, list, &num_fields);
            }
            break;

          case swift_type_dark_matter:
            if (with_gravity) {
              Nparticles = Ndm;
              darkmatter_read_particles(*gparts, list, &num_fields);
            }
            break;

          case swift_type_star:
            if (with_stars) {
              Nparticles = *Nstars;
              star_read_particles(*sparts, list, &num_fields);
            }
            break;

          default:
            message("Particle Type %d not yet supported. Particles ignored",
                    ptype);
        }

        /* Read everything */
        if (!dry_run)
          for (int i = 0; i < num_fields; ++i)
            readArray(h_grp, list[i], Nparticles, N_total[ptype], offset[ptype],
                      internal_units, ic_units);

        /* Close particle group */
        H5Gclose(h_grp);
      }

      /* Close file */
      H5Fclose(h_file);
    }

    /* Wait for the read of the reading to complete */
    MPI_Barrier(comm);
  }

  /* Prepare the DM particles */
  if (!dry_run && with_gravity) io_prepare_dm_gparts(*gparts, Ndm);

  /* Duplicate the hydro particles into gparts */
  if (!dry_run && with_gravity && with_hydro)
    io_duplicate_hydro_gparts(*parts, *gparts, *Ngas, Ndm);

  /* Duplicate the star particles into gparts */
  if (!dry_run && with_gravity && with_stars)
    io_duplicate_star_gparts(*sparts, *gparts, *Nstars, Ndm + *Ngas);

  /* message("Done Reading particles..."); */

  /* Clean up */
  free(ic_units);
}

/**
 * @brief Writes an HDF5 output file (GADGET-3 type) with its XMF descriptor
 *
 * @param e The engine containing all the system.
 * @param baseName The common part of the snapshot file name.
 * @param internal_units The #unit_system used internally
 * @param snapshot_units The #unit_system used in the snapshots
 * @param mpi_rank The MPI rank of this node.
 * @param mpi_size The number of MPI ranks.
 * @param comm The MPI communicator.
 * @param info The MPI information object
 *
 * Creates an HDF5 output file and writes the particles contained
 * in the engine. If such a file already exists, it is erased and replaced
 * by the new one.
 * The companion XMF file is also updated accordingly.
 *
 * Calls #error() if an error occurs.
 *
 */
void write_output_serial(struct engine* e, const char* baseName,
                         const struct unit_system* internal_units,
                         const struct unit_system* snapshot_units, int mpi_rank,
                         int mpi_size, MPI_Comm comm, MPI_Info info) {

  hid_t h_file = 0, h_grp = 0;
  const size_t Ngas = e->s->nr_parts;
  const size_t Nstars = e->s->nr_sparts;
  const size_t Ntot = e->s->nr_gparts;
  int periodic = e->s->periodic;
  int numFiles = 1;
  struct part* parts = e->s->parts;
  struct gpart* gparts = e->s->gparts;
  struct gpart* dmparts = NULL;
  struct spart* sparts = e->s->sparts;
  static int outputCount = 0;
  FILE* xmfFile = 0;

  /* Number of unassociated gparts */
  const size_t Ndm = Ntot > 0 ? Ntot - (Ngas + Nstars) : 0;

  /* File name */
  char fileName[FILENAME_BUFFER_SIZE];
  snprintf(fileName, FILENAME_BUFFER_SIZE, "%s_%03i.hdf5", baseName,
           outputCount);

  /* Compute offset in the file and total number of particles */
  size_t N[swift_type_count] = {Ngas, Ndm, 0, 0, Nstars, 0};
  long long N_total[swift_type_count] = {0};
  long long offset[swift_type_count] = {0};
  MPI_Exscan(&N, &offset, swift_type_count, MPI_LONG_LONG_INT, MPI_SUM, comm);
  for (int ptype = 0; ptype < swift_type_count; ++ptype)
    N_total[ptype] = offset[ptype] + N[ptype];

  /* The last rank now has the correct N_total. Let's broadcast from there */
  MPI_Bcast(&N_total, 6, MPI_LONG_LONG_INT, mpi_size - 1, comm);

  /* Now everybody konws its offset and the total number of particles of each
   * type */

  /* Do common stuff first */
  if (mpi_rank == 0) {

    /* First time, we need to create the XMF file */
    if (outputCount == 0) xmf_create_file(baseName);

    /* Prepare the XMF file for the new entry */
    xmfFile = xmf_prepare_file(baseName);

    /* Write the part corresponding to this specific output */
    xmf_write_outputheader(xmfFile, fileName, e->time);

    /* Open file */
    /* message("Opening file '%s'.", fileName); */
    h_file = H5Fcreate(fileName, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
    if (h_file < 0) {
      error("Error while opening file '%s'.", fileName);
    }

    /* Open header to write simulation properties */
    /* message("Writing runtime parameters..."); */
    h_grp = H5Gcreate(h_file, "/RuntimePars", H5P_DEFAULT, H5P_DEFAULT,
                      H5P_DEFAULT);
    if (h_grp < 0) error("Error while creating runtime parameters group\n");

    /* Write the relevant information */
    io_write_attribute(h_grp, "PeriodicBoundariesOn", INT, &periodic, 1);

    /* Close runtime parameters */
    H5Gclose(h_grp);

    /* Open header to write simulation properties */
    /* message("Writing file header..."); */
    h_grp = H5Gcreate(h_file, "/Header", H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
    if (h_grp < 0) error("Error while creating file header\n");

    /* Print the relevant information and print status */
    io_write_attribute(h_grp, "BoxSize", DOUBLE, e->s->dim, 3);
    double dblTime = e->time;
    io_write_attribute(h_grp, "Time", DOUBLE, &dblTime, 1);
    int dimension = (int)hydro_dimension;
    io_write_attribute(h_grp, "Dimension", INT, &dimension, 1);

    /* GADGET-2 legacy values */
    /* Number of particles of each type */
    unsigned int numParticles[swift_type_count] = {0};
    unsigned int numParticlesHighWord[swift_type_count] = {0};
    for (int ptype = 0; ptype < swift_type_count; ++ptype) {
      numParticles[ptype] = (unsigned int)N_total[ptype];
      numParticlesHighWord[ptype] = (unsigned int)(N_total[ptype] >> 32);
    }
    io_write_attribute(h_grp, "NumPart_ThisFile", LONGLONG, N_total,
                       swift_type_count);
    io_write_attribute(h_grp, "NumPart_Total", UINT, numParticles,
                       swift_type_count);
    io_write_attribute(h_grp, "NumPart_Total_HighWord", UINT,
                       numParticlesHighWord, swift_type_count);
    double MassTable[6] = {0., 0., 0., 0., 0., 0.};
    io_write_attribute(h_grp, "MassTable", DOUBLE, MassTable, swift_type_count);
    unsigned int flagEntropy[swift_type_count] = {0};
    flagEntropy[0] = writeEntropyFlag();
    io_write_attribute(h_grp, "Flag_Entropy_ICs", UINT, flagEntropy,
                       swift_type_count);
    io_write_attribute(h_grp, "NumFilesPerSnapshot", INT, &numFiles, 1);

    /* Close header */
    H5Gclose(h_grp);

    /* Print the code version */
    io_write_code_description(h_file);

    /* Print the SPH parameters */
    if (e->policy & engine_policy_hydro) {
      h_grp = H5Gcreate(h_file, "/HydroScheme", H5P_DEFAULT, H5P_DEFAULT,
                        H5P_DEFAULT);
      if (h_grp < 0) error("Error while creating SPH group");
      hydro_props_print_snapshot(h_grp, e->hydro_properties);
      writeSPHflavour(h_grp);
      H5Gclose(h_grp);
    }

    /* Print the gravity parameters */
    if (e->policy & engine_policy_self_gravity) {
      h_grp = H5Gcreate(h_file, "/GravityScheme", H5P_DEFAULT, H5P_DEFAULT,
                        H5P_DEFAULT);
      if (h_grp < 0) error("Error while creating gravity group");
      gravity_props_print_snapshot(h_grp, e->gravity_properties);
      H5Gclose(h_grp);
    }

    /* Print the runtime parameters */
    h_grp =
        H5Gcreate(h_file, "/Parameters", H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
    if (h_grp < 0) error("Error while creating parameters group");
    parser_write_params_to_hdf5(e->parameter_file, h_grp);
    H5Gclose(h_grp);

    /* Print the system of Units used in the spashot */
    io_write_unit_system(h_file, snapshot_units, "Units");

    /* Print the system of Units used internally */
    io_write_unit_system(h_file, internal_units, "InternalCodeUnits");

    /* Tell the user if a conversion will be needed */
    if (e->verbose) {
      if (units_are_equal(snapshot_units, internal_units)) {

        message("Snapshot and internal units match. No conversion needed.");

      } else {

        message("Conversion needed from:");
        message("(Snapshot) Unit system: U_M =      %e g.",
                snapshot_units->UnitMass_in_cgs);
        message("(Snapshot) Unit system: U_L =      %e cm.",
                snapshot_units->UnitLength_in_cgs);
        message("(Snapshot) Unit system: U_t =      %e s.",
                snapshot_units->UnitTime_in_cgs);
        message("(Snapshot) Unit system: U_I =      %e A.",
                snapshot_units->UnitCurrent_in_cgs);
        message("(Snapshot) Unit system: U_T =      %e K.",
                snapshot_units->UnitTemperature_in_cgs);
        message("to:");
        message("(internal) Unit system: U_M = %e g.",
                internal_units->UnitMass_in_cgs);
        message("(internal) Unit system: U_L = %e cm.",
                internal_units->UnitLength_in_cgs);
        message("(internal) Unit system: U_t = %e s.",
                internal_units->UnitTime_in_cgs);
        message("(internal) Unit system: U_I = %e A.",
                internal_units->UnitCurrent_in_cgs);
        message("(internal) Unit system: U_T = %e K.",
                internal_units->UnitTemperature_in_cgs);
      }
    }

    /* Loop over all particle types */
    for (int ptype = 0; ptype < swift_type_count; ptype++) {

      /* Don't do anything if no particle of this kind */
      if (N_total[ptype] == 0) continue;

      /* Open the particle group in the file */
      char partTypeGroupName[PARTICLE_GROUP_BUFFER_SIZE];
      snprintf(partTypeGroupName, PARTICLE_GROUP_BUFFER_SIZE, "/PartType%d",
               ptype);
      h_grp = H5Gcreate(h_file, partTypeGroupName, H5P_DEFAULT, H5P_DEFAULT,
                        H5P_DEFAULT);
      if (h_grp < 0) {
        error("Error while creating particle group.\n");
      }

      /* Close particle group */
      H5Gclose(h_grp);
    }

    /* Close file */
    H5Fclose(h_file);
  }

  /* Now loop over ranks and write the data */
  for (int rank = 0; rank < mpi_size; ++rank) {

    /* Is it this rank's turn to write ? */
    if (rank == mpi_rank) {

      h_file = H5Fopen(fileName, H5F_ACC_RDWR, H5P_DEFAULT);
      if (h_file < 0)
        error("Error while opening file '%s' on rank %d.", fileName, mpi_rank);

      /* Loop over all particle types */
      for (int ptype = 0; ptype < swift_type_count; ptype++) {

        /* Don't do anything if no particle of this kind */
        if (N_total[ptype] == 0) continue;

        /* Add the global information for that particle type to the XMF
         * meta-file */
        if (mpi_rank == 0)
          xmf_write_groupheader(xmfFile, fileName, N_total[ptype],
                                (enum part_type)ptype);

        /* Open the particle group in the file */
        char partTypeGroupName[PARTICLE_GROUP_BUFFER_SIZE];
        snprintf(partTypeGroupName, PARTICLE_GROUP_BUFFER_SIZE, "/PartType%d",
                 ptype);
        h_grp = H5Gopen(h_file, partTypeGroupName, H5P_DEFAULT);
        if (h_grp < 0) {
          error("Error while opening particle group %s.", partTypeGroupName);
        }

        int num_fields = 0;
        struct io_props list[100];
        size_t Nparticles = 0;

        /* Write particle fields from the particle structure */
        switch (ptype) {

          case swift_type_gas:
            Nparticles = Ngas;
            hydro_write_particles(parts, list, &num_fields);
            break;

          case swift_type_dark_matter:
            /* Allocate temporary array */
            if (posix_memalign((void*)&dmparts, gpart_align,
                               Ndm * sizeof(struct gpart)) != 0)
              error("Error while allocating temporart memory for DM particles");
            bzero(dmparts, Ndm * sizeof(struct gpart));

            /* Collect the DM particles from gpart */
            io_collect_dm_gparts(gparts, Ntot, dmparts, Ndm);

            /* Write DM particles */
            Nparticles = Ndm;
            darkmatter_write_particles(dmparts, list, &num_fields);
            break;

          case swift_type_star:
            Nparticles = Nstars;
            star_write_particles(sparts, list, &num_fields);
            break;

          default:
            error("Particle Type %d not yet supported. Aborting", ptype);
        }
        /* Write everything */
        for (int i = 0; i < num_fields; ++i)
          writeArray(e, h_grp, fileName, xmfFile, partTypeGroupName, list[i],
                     Nparticles, N_total[ptype], mpi_rank, offset[ptype],
                     internal_units, snapshot_units);

        /* Free temporary array */
        if (dmparts) {
          free(dmparts);
          dmparts = 0;
        }

        /* Close particle group */
        H5Gclose(h_grp);

        /* Close this particle group in the XMF file as well */
        if (mpi_rank == 0)
          xmf_write_groupfooter(xmfFile, (enum part_type)ptype);
      }

      /* Close file */
      H5Fclose(h_file);
    }

    /* Wait for the read of the reading to complete */
    MPI_Barrier(comm);
  }

  /* Write footer of LXMF file descriptor */
  if (mpi_rank == 0) xmf_write_outputfooter(xmfFile, outputCount, e->time);

  /* message("Done writing particles..."); */
  ++outputCount;
}

#endif /* HAVE_HDF5 && HAVE_MPI */