-
Matthieu Schaller authoredMatthieu Schaller authored
kernel_hydro.h 8.18 KiB
/*******************************************************************************
* This file is part of SWIFT.
* Copyright (c) 2012 Pedro Gonnet (pedro.gonnet@durham.ac.uk)
* Matthieu Schaller (matthieu.schaller@durham.ac.uk)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
******************************************************************************/
#ifndef SWIFT_KERNEL_HYDRO_H
#define SWIFT_KERNEL_HYDRO_H
/* Includes. */
#include "const.h"
#include "error.h"
#include "inline.h"
#include "vector.h"
/* ------------------------------------------------------------------------- */
#if defined(CUBIC_SPLINE_KERNEL)
/* Coefficients for the kernel. */
#define kernel_name "Cubic spline (M4)"
#define kernel_degree 3 /* Degree of the polynomial */
#define kernel_ivals 2 /* Number of branches */
#define kernel_gamma 1.825742
#define kernel_constant 16. * M_1_PI
static const float kernel_coeffs[(kernel_degree + 1) * (kernel_ivals + 1)]
__attribute__((aligned(16))) = {3.f, -3.f, 0.f, 0.5f, /* 0 < u < 0.5 */
-1.f, 3.f, -3.f, 1.f, /* 0.5 < u < 1 */
0.f, 0.f, 0.f, 0.f}; /* 1 < u */
/* ------------------------------------------------------------------------- */
#elif defined(QUARTIC_SPLINE_KERNEL)
/* Coefficients for the kernel. */
#define kernel_name "Quartic spline (M5)"
#define kernel_degree 4
#define kernel_ivals 5
#define kernel_gamma 2.018932
#define kernel_constant 15625. * M_1_PI / 512.
static const float kernel_coeffs[(kernel_degree + 1) * (kernel_ivals + 1)]
__attribute__((aligned(16))) = {
6.f, 0.f, -2.4f, 0.f, 0.368f, /* 0 < u < 0.2 */
-4.f, 8.f, -4.8f, 0.32f, 0.352f, /* 0.2 < u < 0.4 */
-4.f, 8.f, -4.8f, 0.32f, 0.352f, /* 0.4 < u < 0.6 */
1.f, -4.f, 6.f, -4.f, 1.f, /* 0.6 < u < 0.8 */
1.f, -4.f, 6.f, -4.f, 1.f, /* 0.8 < u < 1 */
0.f, 0.f, 0.f, 0.f, 0.f}; /* 1 < u */
/* ------------------------------------------------------------------------- */
#elif defined(QUINTIC_SPLINE_KERNEL)
/* Coefficients for the kernel. */
#define kernel_name "Quintic spline (M6)"
#define kernel_degree 5
#define kernel_ivals 3
#define kernel_gamma 2.195775
#define kernel_constant 2187. * M_1_PI / 40.
static const float kernel_coeffs[(kernel_degree + 1) * (kernel_ivals + 1)]
__attribute__((aligned(16))) = {
-10.f, 10.f, 0.f,
-2.2222222f, 0.f, 0.271604938f, /* 0 < u < 1/3 */
5.f, -15.f, 16.666667f,
-7.77777777f, 0.925925f, 0.209876543f, /* 1/3 < u < 2/3 */
-1.f, 5.f, -10.f,
10.f, -5.f, 1.f, /* 2/3 < u < 1. */
0.f, 0.f, 0.f,
0.f, 0.f, 0.f}; /* 1 < u */
/* ------------------------------------------------------------------------- */
#elif defined(WENDLAND_C2_KERNEL)
/* Coefficients for the kernel. */
#define kernel_name "Wendland C2"
#define kernel_degree 5
#define kernel_ivals 1
#define kernel_gamma 1.936492
#define kernel_constant 21. * M_1_PI / 2.
static const float kernel_coeffs[(kernel_degree + 1) * (kernel_ivals + 1)]
__attribute__((aligned(16))) = {
4.f, -15.f, 20.f, -10.f, 0.f, 1.f, /* 0 < u < 1 */
0.f, 0.f, 0.f, 0.f, 0.f, 0.f}; /* 1 < u */
/* ------------------------------------------------------------------------- */
#elif defined(WENDLAND_C4_KERNEL)
/* Coefficients for the kernel. */
#define kernel_name "Wendland C4"
#define kernel_degree 8
#define kernel_ivals 1
#define kernel_gamma 2.207940
#define kernel_constant 495. * M_1_PI / 32.
static const float kernel_coeffs[(kernel_degree + 1) * (kernel_ivals + 1)]
__attribute__((aligned(16))) = {
11.666667f, -64.f, 140.f, -149.333333f, 70.f,
0.f, -9.3333333f, 0.f, 1.f, /* 0 < u < 1 */
0.f, 0.f, 0.f, 0.f, 0.f,
0.f, 0.f, 0.f, 0.f}; /* 1 < u */
/* ------------------------------------------------------------------------- */
#elif defined(WENDLAND_C6_KERNEL)
/* Coefficients for the kernel. */
#define kernel_name "Wendland C6"
#define kernel_degree 11
#define kernel_ivals 1
#define kernel_gamma 2.449490
#define kernel_constant 1365. * M_1_PI / 64.
static const float kernel_coeffs[(kernel_degree + 1) * (kernel_ivals + 1)]
__attribute__((aligned(16))) = {
32.f, -231.f, 704.f, -1155.f, 1056.f, -462.f,
0.f, 66.f, 0.f, -11.f, 0.f, 1.f, /* 0 < u < 1 */
0.f, 0.f, 0.f, 0.f, 0.f, 0.f,
0.f, 0.f, 0.f, 0.f, 0.f, 0.f}; /* 1 < u */
/* ------------------------------------------------------------------------- */
#else
#error "A kernel function must be chosen in const.h !!"
/* ------------------------------------------------------------------------- */
#endif
/* Ok, now comes the real deal. */
/* First some powers of gamma = H/h */
#define kernel_gamma2 kernel_gamma *kernel_gamma
#define kernel_gamma3 kernel_gamma2 *kernel_gamma
#define kernel_gamma4 kernel_gamma3 *kernel_gamma
#define kernel_igamma 1. / kernel_gamma
#define kernel_igamma2 kernel_igamma *kernel_igamma
#define kernel_igamma3 kernel_igamma2 *kernel_igamma
#define kernel_igamma4 kernel_igamma3 *kernel_igamma
/* Some powers of eta */
#define kernel_eta3 const_eta_kernel *const_eta_kernel *const_eta_kernel
/* The number of neighbours (i.e. N_ngb) */
#define kernel_nwneigh 4.0 * M_PI *kernel_gamma3 *kernel_eta3 / 3.0
/* Kernel self contribution (i.e. W(0,h)) */
#define kernel_root \
(kernel_coeffs[kernel_degree]) * kernel_constant *kernel_igamma3
/**
* @brief Computes the kernel function and its derivative.
*
* Return 0 if $u > \\gamma = H/h$
*
* @param u The ratio of the distance to the smoothing length $u = x/h$.
* @param W (return) The value of the kernel function $W(x,h)$.
* @param dW_dx (return) The norm of the gradient of $|\\nabla W(x,h)|$.
*/
__attribute__((always_inline)) INLINE static void kernel_deval(
float u, float *const W, float *const dW_dx) {
/* Go to the range [0,1[ from [0,H[ */
const float x = u * (float)kernel_igamma;
/* Pick the correct branch of the kernel */
const int ind = (int)fminf(x * (float)kernel_ivals, kernel_ivals);
const float *const coeffs = &kernel_coeffs[ind * (kernel_degree + 1)];
/* First two terms of the polynomial ... */
float w = coeffs[0] * x + coeffs[1];
float dw_dx = coeffs[0];
/* ... and the rest of them */
for (int k = 2; k <= kernel_degree; k++) {
dw_dx = dw_dx * x + w;
w = x * w + coeffs[k];
}
/* Return everything */
*W = w * (float)kernel_constant * (float)kernel_igamma3;
*dW_dx = dw_dx * (float)kernel_constant * (float)kernel_igamma4;
}
/**
* @brief Computes the kernel function.
*
* @param u The ratio of the distance to the smoothing length $u = x/h$.
* @param W (return) The value of the kernel function $W(x,h)$.
*/
__attribute__((always_inline)) INLINE static void kernel_eval(float u,
float *const W) {
/* Go to the range [0,1[ from [0,H[ */
const float x = u * (float)kernel_igamma;
/* Pick the correct branch of the kernel */
const int ind = (int)fminf(x * (float)kernel_ivals, kernel_ivals);
const float *const coeffs = &kernel_coeffs[ind * (kernel_degree + 1)];
/* First two terms of the polynomial ... */
float w = coeffs[0] * x + coeffs[1];
/* ... and the rest of them */
for (int k = 2; k <= kernel_degree; k++) w = x * w + coeffs[k];
/* Return everything */
*W = w * (float)kernel_constant * (float)kernel_igamma3;
}
/* Some cross-check functions */
void hydro_kernel_dump(int N);
#endif // SWIFT_KERNEL_HYDRO_H